generate.py 54.3 KB
Newer Older
carlushuang's avatar
carlushuang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
# generate kernel instances to speed up compilation

import argparse
import itertools
from pathlib import Path
from typing import List, Optional, Tuple
from dataclasses import dataclass
import copy
import fnmatch

DTYPE_MAP = {
    "fp16": "ck_tile::fp16_t",
    "bf16": "ck_tile::bf16_t",
    "fp8" : "ck_tile::fp8_t"
}

DTYPE_BITS = {
    "fp32": 32,
    "fp16": 16,
    "bf16": 16,
    "fp8" : 8,
    "bf8" : 8
}

MASK_IMPL = {
    "generic" : "ck_tile::GenericAttentionMask",
    "simplified"  : "ck_tile::SimplifiedGenericAttentionMask"
}

MASK_SIMPLIFIED_MAP = {
    "s_no" : "ck_tile::SimplifiedGenericAttentionMask<false>",
    "s_mask" : "ck_tile::SimplifiedGenericAttentionMask<true>",
}

MASK_MAP = {
    "no" : "FmhaMasks::NoMask",
    "causal" : "FmhaMasks::CausalMask",
    "generic" : "FmhaMasks::GenericMask"
}

carlushuang's avatar
carlushuang committed
43
44
45
46
47
48
49
50
51
52
53
54
55
BIAS_MAP = {
    "no" : "ck_tile::BlockAttentionBiasEnum::NO_BIAS",
    "bias"  : "ck_tile::BlockAttentionBiasEnum::ELEMENTWISE_BIAS",
    "alibi" : "ck_tile::BlockAttentionBiasEnum::ALIBI"
}

# TODO: this is ugly
BIAS_CHECK_MAP = {
    "no" : "bias_enum::no_bias",
    "bias"  : "bias_enum::elementwise_bias",
    "alibi" : "bias_enum::alibi"
}

carlushuang's avatar
carlushuang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
MODE_MAP = {
    "batch" : "false",
    "group" : "true"
}

LAYOUT_MAP = {
    "row" : "true",
    "col" : "false"
}

PIPELINE_MAP = {
    "qr" : "ck_tile::BlockFmhaPipelineQRKSVS",
    "qr_async" : "ck_tile::BlockFmhaPipelineQRKSVSAsync",
}

PIPELINE_ENUM_MAP = {
    "qr" : "ck_tile::BlockFmhaPipelineEnum::QRKSVS",
    "qr_async" : "ck_tile::BlockFmhaPipelineEnum::QRKSVS_ASYNC",
}

BOOL_MAP = {
    "t" : "true",
    "f" : "false"
}

81
82
83
84
85
TILE_PARTITIONER_MAP = {
    "shb" : "ck_tile::FmhaFwdTilePartitioner_SHB",
    "hbs" : "ck_tile::FmhaFwdTilePartitioner_HBS",
}

carlushuang's avatar
carlushuang committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
GEN_DIR = ""    # in Cmake, have to generate files in same folder

FMHA_FWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.\n
// auto generated by generate.py
#include "fmha_fwd.hpp"
"""

FMHA_FWD_KERNEL_BODY="""
using fmha_dtype_{F_idx} = {F_dtype};

using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}>;
using fmha_block_warps_{F_idx} = ck_tile::sequence<{F_rm}, {F_rn}, {F_rk}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;

using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx},
                                      fmha_block_warps_{F_idx},
                                      fmha_warp_tile_{F_idx},
                                      fmha_block_warps_{F_idx},
                                      fmha_warp_tile_{F_idx},
                                      {F_vlayout}>;

using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
                                                    {F_skpad},
                                                    {F_dpad},
                                                    {F_dvpad},
                                                    {F_bias},
Dan Yao's avatar
Dan Yao committed
113
                                                    false,
carlushuang's avatar
carlushuang committed
114
                                                    {F_lse},
Dan Yao's avatar
Dan Yao committed
115
116
                                                    {F_dropout},
                                                    {F_squant},
carlushuang's avatar
carlushuang committed
117
118
119
120
121
122
123
124
125
126
                                                    {F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};

using fmha_pipeline_problem_{F_idx} = ck_tile::BlockFmhaPipelineProblem<
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SaccDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::SMPLComputeDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
Dan Yao's avatar
Dan Yao committed
127
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
carlushuang's avatar
carlushuang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
    typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
    fmha_shape_{F_idx},
    {F_mode},
    fmha_mask_{F_idx},
    fmha_trait_{F_idx}>;

using fmha_pipeline_{F_idx} = {F_pipeline}<
    fmha_pipeline_problem_{F_idx}>;

using fmha_epilogue_{F_idx} =
    ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
                                           typename FmhaFwdTypeConfig<{F_dtype}>::ODataType,
                                           {F_spad}, {F_dvpad}>>;

using fmha_kernel_{F_idx} =
146
    ck_tile::FmhaFwdKernel<{F_tile_partitioner}<fmha_shape_{F_idx}>,
carlushuang's avatar
carlushuang committed
147
148
149
150
                  fmha_pipeline_{F_idx},
                  fmha_epilogue_{F_idx}>;

using trait_{F_idx} = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode},{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout},
Dan Yao's avatar
Dan Yao committed
151
                        {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
carlushuang's avatar
carlushuang committed
152
153
154
155
156
157
158
159
160
161
162
163

#include <iostream>

template<>
float fmha_fwd_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_args a)
{{
    using k_ = fmha_kernel_{F_idx};
    if(s.log_level_ > 0)
        std::cout << ", " << k_::GetName() << std::flush;
    auto [kargs, grids] = fmha_fwd_create_kargs_and_grids<k_>(a);
    constexpr dim3 blocks             = k_::BlockSize();
    constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
164
    return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
carlushuang's avatar
carlushuang committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
}}
"""

FMHA_FWD_API_FILENAME="fmha_fwd_api.cpp"
FMHA_FWD_API="""
float fmha_fwd(fmha_fwd_traits t, fmha_fwd_args a, const ck_tile::stream_config& s){{
    float r = -1;
{F_dispatch}
    return r;
}}
"""

FMHA_FWD_API_PER_DTYPE="""    {F_if}(t.data_type.compare(\"{F_dtype}\") == 0){{
{F_hdim_case}
    }}
"""
FMHA_FWD_API_PER_HDIM_CASE="""        {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <= {F_hdim}) {{
{F_inner_dispatch}
        }}
"""
MASK_CHECK_MAP = {
    "no" : "t.mask_type == mask_enum::no_mask",
    "causal" : "t.mask_type == mask_enum::mask_top_left || t.mask_type == mask_enum::mask_bottom_right",
    "generic" : "t.mask_type == mask_enum::window_generic",
}

MASK_SIMPLIFIED_CHECK_MAP = {
    "s_no" : "t.mask_type == mask_enum::no_mask",
    "s_mask" : "t.mask_type != mask_enum::no_mask",
}

Dan Yao's avatar
Dan Yao committed
196
FMHA_FWD_API_INNER_DISPATCH="""            {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_lse == {F_lse})  && (t.has_dropout == {F_dropout}) && (t.do_fp8_static_quant == {F_squant}) &&
carlushuang's avatar
carlushuang committed
197
                        ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
Dan Yao's avatar
Dan Yao committed
198
                using trait_ = fmha_fwd_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0blen}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_lse}, {F_dropout}, {F_squant}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
carlushuang's avatar
carlushuang committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
                return fmha_fwd_<trait_>(s, a);
            }}
"""

def get_mask_map(mask : str):
    if mask == "generic":
        return MASK_MAP
    elif mask == "simplified":
        return MASK_SIMPLIFIED_MAP
    else:
        assert False
        return None

def get_mask_check_map(mask : str):
    if mask == "generic":
        return MASK_CHECK_MAP
    elif mask == "simplified":
        return MASK_SIMPLIFIED_CHECK_MAP
    else:
        assert False
        return None

@dataclass
class FmhaFwdApiTrait:
    pipeline_tag : str
    # sync with fmha_fwd_traits<>, to generate fallback calls
    hdim      : str
    dtype     : str  # data type
    mode      : str  # value from MODE_MAP
    bm0       : int  # tile size along q seqlen (block size)
    bn0       : int  # tile size along qk seqlen
    bk0       : int  # tile size along qk gemm unroll
    bn1       : int  # tile size along v head_dim
    bk1       : int  # tile size along kv gemm unroll
    bk0blen   : int
    vlayout   : str
    mask      : str
carlushuang's avatar
carlushuang committed
236
    bias      : str  #
carlushuang's avatar
carlushuang committed
237
    lse       : str  #
Dan Yao's avatar
Dan Yao committed
238
    dropout   : str
carlushuang's avatar
carlushuang committed
239
240
241
242
243
244
245
246
247
    squant    : str  #
    spad      : str
    skpad     : str
    dpad      : str
    dvpad     : str

    @property
    def name(self) -> str:
        return f'{self.hdim}-{self.dtype}-{self.mode}-{self.bm0}-{self.bn0}-{self.bk0}-{self.bn0}-{self.bk1}-{self.bk0blen}-'+\
Dan Yao's avatar
Dan Yao committed
248
                    f'{self.vlayout}-{self.mask}-{self.bias}-{self.lse}-{self.dropout}-{self.squant}-{self.spad}-{self.skpad}-{self.dpad}-{self.dvpad}'
carlushuang's avatar
carlushuang committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    @property
    def scheck(self) -> str:
        if self.mode == 'group': return 'true/*group mode spad always true*/'                  # group mode only generate spad/skpad == true
        if self.pipeline_tag == 'qr_async':
            if self.spad == 't' : return 'true' # always support
            else :                return 'true'
        elif self.pipeline_tag in ['qr']:
            if self.spad == 't' : return f'true /*a.seqlen_q % {self.bm0} != 0*/'  # TODO: order of get_pipelines() matters! (ugly)
            else :                return f'a.seqlen_q % {self.bm0} == 0'
        else: assert False

    @property
    def skcheck(self) -> str:
        if self.mode == 'group': return 'true/*group mode skpad always true*/'                  # group mode only generate spad/skpad == true
        if self.pipeline_tag == 'qr_async':
carlushuang's avatar
carlushuang committed
265
266
            if self.skpad == 't' : return f'a.seqlen_k == 0 || a.seqlen_k % {self.bn0} != 0'
            else :                 return f'a.seqlen_k != 0 && a.seqlen_k % {self.bn0} == 0'
carlushuang's avatar
carlushuang committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        elif self.pipeline_tag in ['qr', 'qr_fp8']:
            if self.skpad == 't' : return f'true /*a.seqlen_k % {self.bn0} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
            else :                return f'a.seqlen_k % {self.bn0} == 0'
        else: assert False

    @property
    def dcheck(self) -> str:
        if self.pipeline_tag == 'qr_async':
            vec = int((32 * 4) / DTYPE_BITS[self.dtype])
            if self.dpad == 't': return f'a.hdim_q % {vec} == 0'
            else :               assert False
        elif self.pipeline_tag in ['qr']:
            if self.dpad == 't': return f'true /*a.hdim_q % {self.bk0blen} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
            else :               return f'a.hdim_q % {self.bk0blen} == 0'
        else:   assert False

    @property
    def dvcheck(self) -> str:
        if self.pipeline_tag == 'qr_async':
            vec = int((32 * 4) / DTYPE_BITS[self.dtype])
            if self.dvpad == 't': return f'a.hdim_v % {vec} == 0'
            else :                assert False
        elif self.pipeline_tag in ['qr']:
            if self.dvpad == 't': return f'true /*a.hdim_v % {self.bk0blen} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
            else :                return f'a.hdim_v % {self.bk0blen} == 0'
        else:   assert False

@dataclass
class FmhaFwdPipeline:
    tag : str

    F_vlayout   : str  # row/col
    F_spad      : str  # true/false
    F_skpad     : str  #
    F_dpad      : str  #
    F_dvpad     : str  #
    F_bias      : str  # true/false
    F_lse       : str  #
Dan Yao's avatar
Dan Yao committed
305
    F_dropout   : str  #
carlushuang's avatar
carlushuang committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    F_squant    : str  #
    F_mask      : str  # value from MASK_MAP

    @property
    def name(self) -> str:
        def pad_name() -> str:
            n = ''
            if self.F_spad == 't': n += 's'
            if self.F_skpad == 't' : n += 'sk'
            if self.F_dpad == 't' : n += 'd'
            if self.F_dvpad == 't' : n += 'dv'
            if n != '' : n = 'p' + n
            return n
        pn = pad_name()
        n = f'{self.tag}_v{self.F_vlayout[0]}'
        if pn != '' : n += f'_{pn}'
carlushuang's avatar
carlushuang committed
322
        if self.F_bias != 'no' : n += f'_{self.F_bias}'
carlushuang's avatar
carlushuang committed
323
324
325
326
327
        if self.F_mask[0:2] == 's_':
            if self.F_mask == 's_mask': n += f'_mask'
        else:
            if self.F_mask != 'no' : n += f'_m{self.F_mask[0]}'
        if self.F_lse == 't' : n += '_lse'
Dan Yao's avatar
Dan Yao committed
328
        if self.F_dropout == 't' : n += '_dropout'
carlushuang's avatar
carlushuang committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        if self.F_squant == 't' : n += '_squant'
        return n

class FmhaFwdApiPool:
    def __init__(self, mask_impl):
        self.pool = dict()
        self.mask_impl = mask_impl

    def register_traits(self, trait : FmhaFwdApiTrait) -> None:
        # TODO: do we need to check duplication?
        if trait.dtype not in self.pool.keys():
            self.pool[trait.dtype] = dict()
        if trait.hdim not in self.pool[trait.dtype].keys():
            self.pool[trait.dtype][trait.hdim] = list()

        self.pool[trait.dtype][trait.hdim].append(copy.copy(trait))

    @property
    def api(self) -> str:
        per_dtypes=str()
        for i, dtype in enumerate(self.pool.keys()):
            per_hdim_case=str()
            for j, hdim in enumerate(self.pool[dtype].keys()):
                traits=self.pool[dtype][hdim]
                inners=str()
                for k, trait in enumerate(traits):
                    if_k = 'if' if k == 0 else 'else if'
                    inners = inners + FMHA_FWD_API_INNER_DISPATCH.format(F_if=if_k, F_mode=MODE_MAP[trait.mode], F_vlayout=LAYOUT_MAP[trait.vlayout],
                                   F_pipeline_enum=PIPELINE_ENUM_MAP[trait.pipeline_tag], F_mask=get_mask_map(self.mask_impl)[trait.mask],
carlushuang's avatar
carlushuang committed
358
                                   F_mask_check=get_mask_check_map(self.mask_impl)[trait.mask], F_bias_check=BIAS_CHECK_MAP[trait.bias], F_bias=BIAS_MAP[trait.bias],
Dan Yao's avatar
Dan Yao committed
359
                                   F_lse=BOOL_MAP[trait.lse], F_dropout=BOOL_MAP[trait.dropout] ,
carlushuang's avatar
carlushuang committed
360
361
362
363
364
365
366
367
368
369
370
371
372
                                   F_squant=BOOL_MAP[trait.squant], F_scheck=trait.scheck, F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck,
                                   F_spad=BOOL_MAP[trait.spad], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad],
                                   F_bm0=trait.bm0, F_bn0=trait.bn0, F_bk0=trait.bk0, F_bn1=trait.bn1, F_bk1=trait.bk1, F_bk0blen=trait.bk0blen,
                                   F_hdim=hdim, F_dtype=DTYPE_MAP[dtype])
                if_j = 'if' if j == 0 else 'else if'
                per_hdim_case = per_hdim_case + FMHA_FWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
            if_i = 'if' if i == 0 else 'else if'
            per_dtypes = per_dtypes + FMHA_FWD_API_PER_DTYPE.format(F_if=if_i, F_dtype=dtype, F_hdim_case=per_hdim_case)
        return FMHA_FWD_KERNEL_HEADER + FMHA_FWD_API.format(F_dispatch = per_dtypes)

@dataclass
class FmhaFwdTileSize:
    F_bm0       : int  # tile size along q seqlen (block size)
Dan Yao's avatar
Dan Yao committed
373
    F_bn0       : int  # tile size along k seqlen
carlushuang's avatar
carlushuang committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    F_bk0       : int  # tile size along qk gemm unroll
    F_bn1       : int  # tile size along v head_dim
    F_bk1       : int  # tile size along kv gemm unroll
    F_bk0blen   : int  # total length of K0, used for pipeline that need load Q at once (or repeately load Q as a whole tile)
    F_rm        : int  # number of warps along q seqlen (block warps)
    F_rn        : int  # number of warps along k seqlen(not used)
    F_rk        : int  # number of warps along gemm-k(not used)
    F_wm        : int  # warp size along m (warp size)
    F_wn        : int  # warp size along n
    F_wk        : int  # warp size along k
    F_occupancy : int  # occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
    @property
    def name(self) -> str:
        return f"b{self.F_bm0}x{self.F_bn0}x{self.F_bk0}x{self.F_bn1}x{self.F_bk1}x{self.F_bk0blen}" +\
        f"_r{self.F_rm}x{self.F_rn}x{self.F_rk}_w{self.F_wm}x{self.F_wn}x{self.F_wk}" +\
            ("" if self.F_occupancy == -1 else f"_o{self.F_occupancy}")

@dataclass
class FmhaFwdKernel:
    direction       : str
    F_idx           : int  # this is not a tunable, but a counter to differentiate symbol
    F_hdim          : int  # hdim
    F_dtype         : str  # data type
    F_mode          : str  # value from MODE_MAP
    F_tile          : FmhaFwdTileSize
    F_pipeline      : FmhaFwdPipeline
    mask_impl       : str

402
403
404
405
406
407
    def get_tp(self) -> str:
        if self.F_mode == 'group':
            return 'hbs'
        else:
            return 'shb'

carlushuang's avatar
carlushuang committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    @property
    def template(self) -> str:
        kernel_body = str()
        return FMHA_FWD_KERNEL_HEADER + \
            FMHA_FWD_KERNEL_BODY.format(
                F_idx           = self.F_idx,
                F_hdim          = self.F_hdim,
                F_dtype         = DTYPE_MAP[self.F_dtype],
                F_bm0           = self.F_tile.F_bm0,
                F_bn0           = self.F_tile.F_bn0,
                F_bk0           = self.F_tile.F_bk0,
                F_bn1           = self.F_tile.F_bn1,
                F_bk1           = self.F_tile.F_bk1,
                F_bk0blen       = self.F_tile.F_bk0blen,
                F_rm            = self.F_tile.F_rm,
                F_rn            = self.F_tile.F_rn,
                F_rk            = self.F_tile.F_rk,
                F_wm            = self.F_tile.F_wm,
                F_wn            = self.F_tile.F_wn,
                F_wk            = self.F_tile.F_wk,
                F_vlayout       = LAYOUT_MAP[self.F_pipeline.F_vlayout],
                F_spad          = BOOL_MAP[self.F_pipeline.F_spad],
                F_skpad         = BOOL_MAP[self.F_pipeline.F_skpad],
                F_dpad          = BOOL_MAP[self.F_pipeline.F_dpad],
Dan Yao's avatar
Dan Yao committed
432
                F_dvpad         = BOOL_MAP[self.F_pipeline.F_dvpad],
carlushuang's avatar
carlushuang committed
433
                F_bias          = BIAS_MAP[self.F_pipeline.F_bias],
carlushuang's avatar
carlushuang committed
434
                F_lse           = BOOL_MAP[self.F_pipeline.F_lse],
Dan Yao's avatar
Dan Yao committed
435
                F_dropout       = BOOL_MAP[self.F_pipeline.F_dropout],
carlushuang's avatar
carlushuang committed
436
437
438
439
440
                F_squant        = BOOL_MAP[self.F_pipeline.F_squant],
                F_occupancy     = self.F_tile.F_occupancy,
                F_pipeline_enum = PIPELINE_ENUM_MAP[self.F_pipeline.tag],
                F_mask          = get_mask_map(self.mask_impl)[self.F_pipeline.F_mask],
                F_mode          = MODE_MAP[self.F_mode],
441
442
                F_pipeline      = PIPELINE_MAP[self.F_pipeline.tag],
                F_tile_partitioner = TILE_PARTITIONER_MAP[self.get_tp()])
carlushuang's avatar
carlushuang committed
443
444
445
446

    @property
    def name(self) -> str:
        # TODO: we don't encode idx here
447
        return f"fmha_{self.direction}_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_{self.get_tp()}_" + \
carlushuang's avatar
carlushuang committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                self.F_tile.name + '_' + self.F_pipeline.name

    @property
    def filename(self) -> str:
        return self.name + ".cpp"

    def api_trait(self) -> FmhaFwdApiTrait:
        return FmhaFwdApiTrait(
                pipeline_tag=self.F_pipeline.tag,
                hdim=str(self.F_hdim),
                dtype=self.F_dtype,
                mode=self.F_mode,
                bm0=self.F_tile.F_bm0,
                bn0=self.F_tile.F_bn0,
                bk0=self.F_tile.F_bk0,
                bn1=self.F_tile.F_bn1,
                bk1=self.F_tile.F_bk1,
                bk0blen=self.F_tile.F_bk0blen,
                vlayout=self.F_pipeline.F_vlayout,
                mask=self.F_pipeline.F_mask,
                bias=self.F_pipeline.F_bias,
                lse=self.F_pipeline.F_lse,
Dan Yao's avatar
Dan Yao committed
470
                dropout=self.F_pipeline.F_dropout,
carlushuang's avatar
carlushuang committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
                squant=self.F_pipeline.F_squant,
                spad=self.F_pipeline.F_spad,
                skpad=self.F_pipeline.F_skpad,
                dpad=self.F_pipeline.F_dpad,
                dvpad=self.F_pipeline.F_dvpad)

# TODO: design a more practical way to do it
# this is current supported tile size per hdim
def get_fmha_fwd_tile_dict_from_dtype(direction : str, dtype : str) -> Optional[dict]:
    if direction == 'fwd':
        if dtype == 'fp16' or dtype == 'bf16':
            return {
                 '32'  : FmhaFwdTileSize(128, 64, 16, 32, 32, 32,     2, 1, 1, 32, 32, 16, -1),
                 '64'  : FmhaFwdTileSize(128, 64, 32, 64, 32, 64,     4, 1, 1, 32, 32, 16, -1),
                 '128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128,  4, 1, 1, 32, 32, 16, -1),
                 '256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256,  4, 1, 1, 32, 32, 16, -1),
            }
        elif dtype == 'fp8' or dtype == 'bf8':
            return {
carlushuang's avatar
carlushuang committed
490
491
492
                '64'  : FmhaFwdTileSize(128, 64, 32, 64, 32, 64,     2, 1, 1, 32, 32, 32, -1),
                '128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128,  4, 1, 1, 32, 32, 32, -1),
                '256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256,  4, 1, 1, 32, 32, 32, -1)
carlushuang's avatar
carlushuang committed
493
494
495
496
497
498
            }
        else:
            return None
    else:
        return None

Dan Yao's avatar
Dan Yao committed
499
def get_fwd_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaFwdApiPool, List[FmhaFwdKernel]]:
carlushuang's avatar
carlushuang committed
500
501
502
503
504
505
506
507
508
509
    # TODO: we don't support tuning yet, so pick up one value for vlayout/pipeline/pad
    #       support this in future
    def get_pipelines(dtype, hdim) -> List[FmhaFwdPipeline]:
        # this function will populate a list possible pipelines
        # TODO: the order of List matters! the later in this list will be also be checked later
        # TODO: currently for qr pipeline, let 't' padding to appear later!!
        # TODO: how to design this more generic?
        squant = 't' if dtype == 'fp8' else 'f'
        pipelines = []
        if dtype in ['fp16', 'bf16']:
Dan Yao's avatar
Dan Yao committed
510
            for mask, bias, lse, dropout in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"]):
carlushuang's avatar
carlushuang committed
511
512
                if hdim == 256:
                # if True:
Dan Yao's avatar
Dan Yao committed
513
514
                    pipelines.append(FmhaFwdPipeline('qr', 'row', 'f', 'f', 'f', 'f', bias, lse, dropout, squant, mask))
                    pipelines.append(FmhaFwdPipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, lse, dropout, squant, mask))
carlushuang's avatar
carlushuang committed
515

Dan Yao's avatar
Dan Yao committed
516
517
                    pipelines.append(FmhaFwdPipeline('qr', 'row', 't', 't', 't', 't', bias, lse, dropout, squant, mask))
                    pipelines.append(FmhaFwdPipeline('qr', 'col', 't', 't', 't', 't', bias, lse, dropout, squant, mask))
carlushuang's avatar
carlushuang committed
518
                else:
Dan Yao's avatar
Dan Yao committed
519
520
521
522
                    pipelines.append(FmhaFwdPipeline('qr_async', 'row', 't', 'f', 't', 't', bias, lse, dropout, squant, mask))
                    pipelines.append(FmhaFwdPipeline('qr_async', 'row', 't', 't', 't', 't', bias, lse, dropout, squant, mask))
                    pipelines.append(FmhaFwdPipeline('qr_async', 'col', 't', 'f', 't', 't', bias, lse, dropout, squant, mask))
                    pipelines.append(FmhaFwdPipeline('qr_async', 'col', 't', 't', 't', 't', bias, lse, dropout, squant, mask))
carlushuang's avatar
carlushuang committed
523
                    if receipt == 1:
Dan Yao's avatar
Dan Yao committed
524
525
                        pipelines.append(FmhaFwdPipeline('qr', 'row', 't', 't', 't', 't', bias, lse, dropout, squant, mask)) # TODO: cover arbitraty hdim
                        pipelines.append(FmhaFwdPipeline('qr', 'col', 't', 'f', 't', 't', bias, lse, dropout, squant, mask)) # TODO: cover arbitraty hdim
carlushuang's avatar
carlushuang committed
526
        elif dtype in ['fp8', 'bf8']:
Dan Yao's avatar
Dan Yao committed
527
            # no need lse/dropout kernels
carlushuang's avatar
carlushuang committed
528
            for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()):
Dan Yao's avatar
Dan Yao committed
529
                pipelines.append(FmhaFwdPipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 'f', 'f', squant, mask))
carlushuang's avatar
carlushuang committed
530
531
532
533
534
535
536
        else:
            assert False
        return pipelines

    gen = list()
    api_pool = FmhaFwdApiPool(mask_impl)

Dan Yao's avatar
Dan Yao committed
537
    for direction, dtype in itertools.product(["fwd"], DTYPE_MAP.keys()):
carlushuang's avatar
carlushuang committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        d = get_fmha_fwd_tile_dict_from_dtype(direction, dtype)
        if d == None:
            continue
        #for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
        for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()):
            tile = d[hdim_str]
            hdim = int(hdim_str)
            for pipeline in get_pipelines(dtype, hdim):
                if mode == "group":
                    if pipeline.F_spad != 't' or pipeline.F_skpad != 't':
                        # in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
                        continue
                k = FmhaFwdKernel(direction=direction,
                                  F_idx=0,
                                  F_hdim=hdim,
                                  F_dtype=dtype,
                                  F_mode=mode,
                                  F_tile=tile,
                                  F_pipeline=pipeline,
                                  mask_impl=mask_impl)
                if kernel_filter != None:
                    if not fnmatch.fnmatch(k.name, kernel_filter):
                        continue
Dan Yao's avatar
Dan Yao committed
561
562
563
564
565
566
567
                if receipt == 2:
                    cond = dtype in ['fp16', 'bf16']
                    cond &= pipeline.F_vlayout == 'row'
                    cond &= pipeline.F_bias in ['no', 'alibi']
                    cond &= pipeline.F_squant == 'f'
                    if not cond:
                        continue
carlushuang's avatar
carlushuang committed
568
569
570
571
572
                api_pool.register_traits(k.api_trait())
                gen.append(k)

    return (api_pool, gen)

Dan Yao's avatar
Dan Yao committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
BWD_DQDKDV_PIPELINE_MAP = {
    "ks_kts_vr" : "ck_tile::BlockFmhaBwdDQDKDVPipelineKSKTSVR",
    "qs_ks_vr_dos" : "ck_tile::BlockFmhaBwdDQDKDVPipelineQSKSVROGradS",
    "ks_vr" : "ck_tile::BlockFmhaBwdDQDKDVPipelineKSVR",
}

BWD_DQDKDV_PIPELINE_ENUM_MAP = {
    "ks_kts_vr" : "ck_tile::BlockFmhaBwdPipelineEnum::KSKTSVR",
    "qs_ks_vr_dos" : "ck_tile::BlockFmhaBwdPipelineEnum::QSKSVROGradS",
    "ks_vr" : "ck_tile::BlockFmhaBwdPipelineEnum::KSVR",
}

FMHA_BWD_KERNEL_HEADER = """// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.\n
// auto generated by generate.py
#include "fmha_bwd.hpp"
"""

FMHA_BWD_DQ_DK_DV_KERNEL_BODY="""
using fmha_dtype_{F_idx} = {F_dtype};

using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bk1}, {F_bk2}, {F_bk3}, {F_bk4}, {F_bhdq}, {F_bhdv}>;
using fmha_block_warps0_{F_idx} = ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>;
using fmha_block_warps1_{F_idx} = ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>;
using fmha_block_warps2_{F_idx} = ck_tile::sequence<{F_rm2}, {F_rn2}, {F_rk2}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;

// TODO: simplify Gemm0~4BlockWarps in TileFmhaBwdShape
//       G0&G2 -> GSdP
//       G1&G3 -> GdKV
//       G4    -> GdQ
using fmha_bwd_shape_{F_idx} = ck_tile::TileFmhaBwdShape<fmha_block_tile_{F_idx},
                                      fmha_block_warps0_{F_idx},
                                      fmha_warp_tile_{F_idx},
                                      fmha_block_warps1_{F_idx},
                                      fmha_warp_tile_{F_idx},
                                      fmha_block_warps0_{F_idx},
                                      fmha_warp_tile_{F_idx},
                                      fmha_block_warps1_{F_idx},
                                      fmha_warp_tile_{F_idx},
                                      fmha_block_warps2_{F_idx},
                                      fmha_warp_tile_{F_idx}>;

using fmha_bwd_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
                                                    {F_skpad},
                                                    {F_dpad},
                                                    {F_dvpad},
                                                    {F_bias},
                                                    {F_dbias},
                                                    false,
                                                    {F_dropout},
                                                    false,
                                                    {F_occupancy}>;
using fmha_mask_{F_idx} = {F_mask};

using fmha_bwd_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdPipelineProblem<
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::KDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::VDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::GemmDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::AccDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::RandValOutputDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::QGradDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::KGradDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::VGradDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::BiasGradDataType,
    fmha_bwd_shape_{F_idx},
    {F_mode},
    fmha_mask_{F_idx},
    fmha_bwd_trait_{F_idx}>;

using fmha_bwd_pipeline_{F_idx} = {F_pipeline}<
    fmha_bwd_pipeline_problem_{F_idx}>;

using fmha_bwd_dk_epilogue_{F_idx} =
    ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
                               typename FmhaBwdTypeConfig<{F_dtype}>::KGradDataType,
                               false, false>>;

using fmha_bwd_dv_epilogue_{F_idx} =
    ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaBwdTypeConfig<{F_dtype}>::AccDataType,
                               typename FmhaBwdTypeConfig<{F_dtype}>::VGradDataType,
                               false, false>>;

using fmha_bwd_dq_dk_dv_kernel_{F_idx} =
    ck_tile::FmhaBwdDQDKDVKernel<ck_tile::FmhaBwdTilePartitioner<fmha_bwd_shape_{F_idx}>,
                        fmha_bwd_pipeline_{F_idx},
                        fmha_bwd_dk_epilogue_{F_idx},
                        fmha_bwd_dv_epilogue_{F_idx}>;

using dq_dk_dv_trait_{F_idx} = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, fmha_mask_{F_idx}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;

#include <iostream>

template<>
float fmha_bwd_dq_dk_dv_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
    using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
    if(s.log_level_ > 0)
        std::cout << ", " << k_::GetName() << std::flush;
    auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
    constexpr dim3 blocks             = k_::BlockSize();
    constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
    return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}

template<>
void fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
    using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
    auto [kargs, grids] = fmha_bwd_dq_dk_dv_create_kargs_and_grids<k_>(a);
    constexpr dim3 blocks             = k_::BlockSize();
    constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
    ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}

template<>
std::string fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_{F_idx}>()
{{
    using k_ = fmha_bwd_dq_dk_dv_kernel_{F_idx};
    return k_::GetName();
}}
"""

FMHA_BWD_API_FILENAME="fmha_bwd_api.cpp"
FMHA_BWD_API="""
#include <iostream>

template<typename dot_do_o_trait_, typename dq_dk_dv_trait_>
float fmha_bwd_(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
    if(s.log_level_ > 0)
        std::cout << ", " << fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_>() << ", " << fmha_bwd_dq_dk_dv_get_name_<dq_dk_dv_trait_>() << std::flush;
    return ck_tile::launch_kernel(s,
            [=](const ck_tile::stream_config& s_){{ fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_>(s_, a); }},
            [=](const ck_tile::stream_config& s_){{ fmha_bwd_dq_dk_dv_oneshot_<dq_dk_dv_trait_>(s_, a); }}
    );
}}

float fmha_bwd(fmha_bwd_traits t, fmha_bwd_args a, const ck_tile::stream_config& s){{
    float r = -1;
{F_dispatch}
    return r;
}}
"""

FMHA_BWD_API_PER_DTYPE="""    {F_if}(t.data_type.compare(\"{F_dtype}\") == 0){{
{F_hdim_case}
    }}
"""
FMHA_BWD_API_PER_HDIM_CASE="""        {F_if} (t.hdim_q <= {F_hdim} && t.hdim_v <= {F_hdim}) {{
{F_inner_dispatch}
        }}
"""

FMHA_BWD_API_INNER_DISPATCH="""            {F_if}((t.is_group_mode == {F_mode}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.has_dbias == {F_dbias}) && (t.has_dropout == {F_dropout}) &&
                        ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
                using dq_dk_dv_trait_ = fmha_bwd_dq_dk_dv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_pipeline_enum}, {F_mask}, {F_bias}, {F_dbias}, {F_dropout}, {F_spad0}, {F_skpad}, {F_dpad}, {F_dvpad}>;
                using dot_do_o_trait_ = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad1}, {F_dvpad}>;
                r = fmha_bwd_<dot_do_o_trait_, dq_dk_dv_trait_>(s, a);
                return r;
            }}
"""

@dataclass
class FmhaBwdDQDKDVApiTrait:
    pipeline  : str
    # sync with fmha_bwd_traits<>, to generate fallback calls
    hdim      : str
    dtype     : str  # data type
    mode      : str  # value from MODE_MAP
    bm0       : int  # tile size along q seqlen (block size)
    bn0       : int  # tile size along k seqlen
    bhdq      : int  # q head_dim
    bhdv      : int  # v head_dim
    mask      : str
    bias      : str
    dbias     : str
    dropout   : str
    spad      : str
    skpad     : str
    dpad      : str
    dvpad     : str

    @property
    def name(self) -> str:
        return f'{self.pipeline}-{self.hdim}-{self.dtype}-{self.mode}-{self.mask}-{self.bias}-{self.dbias}-{self.dropout}-{self.spad}-{self.skpad}-{self.dpad}-{self.dvpad}'

    def scheck(self, spad1 : str) -> str:
        if self.mode == 'group':
            return 'true' # always support
        elif self.spad == 't' and spad1 == 't':
            return f'a.seqlen_q % {self.bm0} != 0'
        elif self.spad == 'f' and spad1 == 't':
            return f'a.seqlen_q % {self.bm0} == 0 and a.seqlen_q % 256 != 0' # BlockSize
        else: # self.skpad == 'f' and skpad1 == 'f'
            return f'a.seqlen_q % 256 == 0' # BlockSize

    @property
    def skcheck(self) -> str:
        if self.mode == 'group':
            return 'true' # always support
        elif self.skpad == 't':
            return f'a.seqlen_k % {self.bn0} != 0'
        else:
            return f'a.seqlen_k % {self.bn0} == 0'

    @property
    def dcheck(self) -> str:
        if self.dpad == 't': return f'a.hdim_q % {self.bhdq} != 0'
        else :               return f'a.hdim_q % {self.bhdq} == 0'

    @property
    def dvcheck(self) -> str:
        if self.dvpad == 't': return f'a.hdim_v % {self.bhdv} != 0'
        else :                return f'a.hdim_v % {self.bhdv} == 0'

class FmhaBwdApiPool:
    def __init__(self, mask_impl):
        self.dq_dk_dv_pool = dict()
        self.mask_impl = mask_impl

    def register_dq_dk_dv_traits(self, trait : FmhaBwdDQDKDVApiTrait) -> None:
        # TODO: do we need to check duplication?
        if trait.dtype not in self.dq_dk_dv_pool.keys():
            self.dq_dk_dv_pool[trait.dtype] = dict()
        if trait.hdim not in self.dq_dk_dv_pool[trait.dtype].keys():
            self.dq_dk_dv_pool[trait.dtype][trait.hdim] = list()

        self.dq_dk_dv_pool[trait.dtype][trait.hdim].append(copy.copy(trait))

    @property
    def api(self) -> str:
        per_dtypes=str()
        for i, dtype in enumerate(self.dq_dk_dv_pool.keys()):
            per_hdim_case=str()
            for j, hdim in enumerate(self.dq_dk_dv_pool[dtype].keys()):
                traits=self.dq_dk_dv_pool[dtype][hdim]
                inners=str()
                for k, trait in enumerate(traits):
                    if_k = 'if' if k == 0 else 'else if'
                    for spad1 in ["t", "f"]:
                        if ((spad1 == "f" and trait.spad == "t") or (trait.mode == "group" and spad1 == "f")):
                            continue
                        inners = inners + FMHA_BWD_API_INNER_DISPATCH.format(F_if=if_k, F_mode=MODE_MAP[trait.mode], F_mask=get_mask_map(self.mask_impl)[trait.mask], F_pipeline_enum=BWD_DQDKDV_PIPELINE_ENUM_MAP[trait.pipeline],
                                    F_mask_check=get_mask_check_map(self.mask_impl)[trait.mask], F_bias_check=BIAS_CHECK_MAP[trait.bias], F_bias=BIAS_MAP[trait.bias], F_dbias=BOOL_MAP[trait.dbias], F_dropout=BOOL_MAP[trait.dropout],
                                    F_scheck=trait.scheck(spad1=spad1), F_skcheck=trait.skcheck, F_dcheck=trait.dcheck, F_dvcheck=trait.dvcheck, F_hdim=hdim, F_dtype=DTYPE_MAP[dtype],
                                    F_spad0=BOOL_MAP[trait.spad], F_spad1=BOOL_MAP[spad1], F_skpad=BOOL_MAP[trait.skpad], F_dpad=BOOL_MAP[trait.dpad], F_dvpad=BOOL_MAP[trait.dvpad])

                if_j = 'if' if j == 0 else 'else if'
                per_hdim_case = per_hdim_case + FMHA_BWD_API_PER_HDIM_CASE.format(F_if=if_j, F_hdim=hdim, F_inner_dispatch=inners)
            if_i = 'if' if i == 0 else 'else if'
            per_dtypes = per_dtypes + FMHA_BWD_API_PER_DTYPE.format(F_if=if_i, F_dtype=dtype, F_hdim_case=per_hdim_case)

        return FMHA_BWD_KERNEL_HEADER + FMHA_BWD_API.format(F_dispatch = per_dtypes)

# GEMM0: Q@K=S^T
# GEMM1: P^T@dO^T=dV(This was chosen as G1 to match fwd, but N1 must be equal to headdim_v)
# GEMM2: dO@V=dP^T(This was chosen as G2 because of the calculation order)
# GEMM3: dS^T@Q^T=dK(Similar to G1, but N3 must be equal to headdim_qk)
# GEMM4: dS@K^T=dQ(N4 must be equal to headdim_qk)
# Is it necessary to distinguish between K0~K4?
@dataclass
class FmhaBwdDQDKDVTileSize:
    F_bm0       : int  # tile size along q seqlen (block size)
    F_bn0       : int  # tile size along k seqlen
    F_bk0       : int  # tile size along gemm0 unroll(F_bhdq)
    F_bk1       : int  # tile size along gemm1 unroll(F_bm0)
    F_bk2       : int  # tile size along gemm2 unroll(F_bhdv)
    F_bk3       : int  # tile size along gemm3 unroll(F_bm0)
    F_bk4       : int  # tile size along gemm4 unroll(F_bn0)
    F_bhdq      : int  # q head_dim
    F_bhdv      : int  # v head_dim
    F_rm0       : int  # number of warps along q seqlen (block warps) in gemm0/gemm2
    F_rn0       : int  # number of warps along k seqlen (block warps) in gemm0/gemm2
    F_rk0       : int  # number of warps along gemm-k (not used) in gemm0/gemm2
    F_rm1       : int  # number of warps along k seqlen (block warps) in gemm1/gemm3
    F_rn1       : int  # number of warps along q seqlen (block warps) in gemm1/gemm3
    F_rk1       : int  # number of warps along gemm-k (not used) in gemm1/gemm3
    F_rm2       : int  # number of warps along k seqlen (block warps) in gemm4
    F_rn2       : int  # number of warps along q seqlen (block warps) in gemm4
    F_rk2       : int  # number of warps along gemm-k (not used) in gemm4
    F_wm        : int  # warp size along m (warp size)
    F_wn        : int  # warp size along n
    F_wk        : int  # warp size along k
    F_occupancy : int  # occupancy
    @property
    def name(self) -> str:
        return f"b{self.F_bm0}x{self.F_bn0}x{self.F_bk0}x{self.F_bk1}x{self.F_bk2}x{self.F_bk3}x{self.F_bk4}x{self.F_bhdq}x{self.F_bhdv}" +\
        f"_r{self.F_rm0}x{self.F_rn0}x{self.F_rk0}_r{self.F_rm1}x{self.F_rn1}x{self.F_rk1}_r{self.F_rm2}x{self.F_rn2}x{self.F_rk2}" +\
        f"_w{self.F_wm}x{self.F_wn}x{self.F_wk}_o{self.F_occupancy}"

@dataclass
class FmhaBwdDQDKDVKernel:
    direction   : str
    F_idx       : int  # this is not a tunable, but a counter to differentiate symbol
    F_hdim      : int  # hdim
    F_dtype     : str  # data type
    F_tile      : FmhaBwdDQDKDVTileSize
    F_spad      : str  # true/false
    F_skpad     : str  #
    F_dpad      : str  #
    F_dvpad     : str  #
    F_bias      : str  #
    F_dbias     : str  #
    F_dropout   : str  #
    F_mask      : str  # value from MASK_MAP
    F_mode      : str  # value from MODE_MAP
    F_pipeline  : str
    mask_impl   : str

    @property
    def template(self) -> str:
        return FMHA_BWD_KERNEL_HEADER + \
            FMHA_BWD_DQ_DK_DV_KERNEL_BODY.format(
                F_idx       = self.F_idx,
                F_hdim      = self.F_hdim,
                F_dtype     = DTYPE_MAP[self.F_dtype],
                F_bm0       = self.F_tile.F_bm0,
                F_bn0       = self.F_tile.F_bn0,
                F_bk0       = self.F_tile.F_bk0,
                F_bk1       = self.F_tile.F_bk1,
                F_bk2       = self.F_tile.F_bk2,
                F_bk3       = self.F_tile.F_bk3,
                F_bk4       = self.F_tile.F_bk4,
                F_bhdq      = self.F_tile.F_bhdq,
                F_bhdv      = self.F_tile.F_bhdv,
                F_rm0       = self.F_tile.F_rm0,
                F_rn0       = self.F_tile.F_rn0,
                F_rk0       = self.F_tile.F_rk0,
                F_rm1       = self.F_tile.F_rm1,
                F_rn1       = self.F_tile.F_rn1,
                F_rk1       = self.F_tile.F_rk1,
                F_rm2       = self.F_tile.F_rm2,
                F_rn2       = self.F_tile.F_rn2,
                F_rk2       = self.F_tile.F_rk2,
                F_wm        = self.F_tile.F_wm,
                F_wn        = self.F_tile.F_wn,
                F_wk        = self.F_tile.F_wk,
                F_spad      = BOOL_MAP[self.F_spad],
                F_skpad     = BOOL_MAP[self.F_skpad],
                F_dpad      = BOOL_MAP[self.F_dpad],
                F_dvpad     = BOOL_MAP[self.F_dvpad],
                F_bias      = BIAS_MAP[self.F_bias],
                F_dbias     = BOOL_MAP[self.F_dbias],
                F_dropout   = BOOL_MAP[self.F_dropout],
                F_occupancy = self.F_tile.F_occupancy,
                F_mask      = get_mask_map(self.mask_impl)[self.F_mask],
                F_mode      = MODE_MAP[self.F_mode],
                F_pipeline_enum = BWD_DQDKDV_PIPELINE_ENUM_MAP[self.F_pipeline],
                F_pipeline  = BWD_DQDKDV_PIPELINE_MAP[self.F_pipeline])

    @property
    def name(self) -> str:
        def pad_name() -> str:
            n = ''
            if self.F_spad == 't': n += 's'
            if self.F_skpad == 't' : n += 'sk'
            if self.F_dpad == 't' : n += 'd'
            if self.F_dvpad == 't' : n += 'dv'
            if n != '' : n = 'p' + n
            return n
        pn = pad_name()
        n = f"fmha_{self.direction}_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_" + self.F_tile.name
        if pn != '' : n += f'_{pn}'
        if self.F_bias != 'no' : n += f'_{self.F_bias}'
        if self.F_dbias == 't' : n += '_dbias'
        if self.F_mask[0:2] == 's_':
            if self.F_mask == 's_mask': n += f'_mask'
        else:
            if self.F_mask != 'no' : n += f'_m{self.F_mask[0]}'
        if self.F_dropout == 't' : n += '_dropout'
        return n

    @property
    def filename(self) -> str:
        return self.name + ".cpp"

    def api_trait(self) -> FmhaBwdDQDKDVApiTrait:
        return FmhaBwdDQDKDVApiTrait(pipeline=self.F_pipeline,
                hdim=str(self.F_hdim),
                dtype=self.F_dtype,
                mode=self.F_mode,
                bm0=self.F_tile.F_bm0,
                bn0=self.F_tile.F_bn0,
                bhdq=self.F_tile.F_bhdq,
                bhdv=self.F_tile.F_bhdv,
                mask=self.F_mask,
                bias=self.F_bias,
                dbias=self.F_dbias,
                dropout=self.F_dropout,
                spad=self.F_spad,
                skpad=self.F_skpad,
                dpad=self.F_dpad,
                dvpad=self.F_dvpad)

# TODO: design a more practical way to do it
# this is current supported tile size & pipeline.
def get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(direction : str, dtype : str) -> Optional[dict]:
    if direction == 'bwd':
        if dtype == 'fp16' or dtype == 'bf16':
            return {
                '32'  : [FmhaBwdDQDKDVTileSize(128, 128, 32, 32, 32, 32, 32,  32,  32, 1, 4, 1, 4, 1, 1, 4, 1, 1, 32, 32, 16, 1),
                         "qs_ks_vr_dos"],
                '64'  : [FmhaBwdDQDKDVTileSize( 64, 128, 32, 32, 32, 32, 32,  64,  64, 1, 4, 1, 4, 1, 1, 2, 2, 1, 32, 32, 16, 1),
                         "qs_ks_vr_dos"],
                '128' : [FmhaBwdDQDKDVTileSize( 64, 128, 32, 32, 32, 32, 32, 128, 128, 1, 4, 1, 4, 1, 1, 2, 2, 1, 32, 32, 16, 1),
                         "ks_vr"]
            }
        else:
            return None
    else:
        return None

def get_bwd_dq_dk_dv_blobs(kernel_filter : Optional[str], receipt, mask_impl) -> Tuple[FmhaBwdApiPool, List[FmhaBwdDQDKDVKernel]]:
    # TODO: we don't support tuning yet, so pick up one value for pad
    #       support this in future
    gen = list()
    api_pool = FmhaBwdApiPool(mask_impl)

    for direction, dtype in itertools.product(["bwd"], DTYPE_MAP.keys()):
        d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(direction, dtype)
        if d == None:
            continue
        for hdim_str, mode, mask, bias, dbias, dropout, spad, skpad, dpad, dvpad in itertools.product(d.keys(), MODE_MAP.keys(), get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"], ["t", "f"], ["t", "f"], ["t", "f"], ["t", "f"]):
            tile = d[hdim_str][0]
            ppl = d[hdim_str][1]
            hdim = int(hdim_str)
            if (mode == "group") and (spad == "f" or skpad == "f"):
                continue
            if ((bias == "no" or bias == "alibi") and dbias == "t"):
                continue
            k = FmhaBwdDQDKDVKernel(direction=direction, F_idx=0, F_hdim=hdim, F_dtype=dtype, F_tile=tile,
                                F_spad=spad, F_skpad=skpad, F_dpad=dpad, F_dvpad=dvpad,
                                F_bias=bias, F_dbias=dbias, F_dropout=dropout, F_mask=mask, F_mode=mode,
                                F_pipeline=ppl, mask_impl=mask_impl)
            if kernel_filter != None:
                if not fnmatch.fnmatch(k.name, kernel_filter):
                    continue
            if receipt == 2:
                    cond = dtype in ['fp16', 'bf16']
                    cond &= bias in ['no', 'alibi']
                    if not cond:
                        continue
            api_pool.register_dq_dk_dv_traits(k.api_trait())
            gen.append(k)

    return (api_pool, gen)

FMHA_BWD_DOT_DO_O_KERNEL_BODY="""
using fmha_dtype_{F_idx} = {F_dtype};

using fmha_bwd_dot_do_o_trait_{F_idx} = ck_tile::TileFmhaBwdOGradDotOTraits<{F_spad},
                                                    {F_dvpad},
                                                    {F_occupancy}>;

using fmha_bwd_dot_do_o_pipeline_problem_{F_idx} = ck_tile::BlockFmhaBwdOGradDotOPipelineProblem<
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::OGradDataType,
    typename FmhaBwdTypeConfig<fmha_dtype_{F_idx}>::DDataType,
    /* BlockSize = */ 256,
    {F_hdim},
    {F_mode},
    fmha_bwd_dot_do_o_trait_{F_idx}>;

using fmha_bwd_dot_do_o_{F_idx} = typename ck_tile::BlockFmhaBwdOGradDotO<
    fmha_bwd_dot_do_o_pipeline_problem_{F_idx}>;

using fmha_bwd_dot_do_o_kernel_{F_idx} =
    ck_tile::FmhaBwdOGradDotOKernel<ck_tile::FmhaBwdOGradDotOTilePartitioner</* BlockSize = */ 256>,
                                    fmha_bwd_dot_do_o_{F_idx}>;

using dot_do_o_trait_{F_idx} = fmha_bwd_dot_do_o_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_spad}, {F_dvpad}>;

#include <iostream>

template<>
float fmha_bwd_dot_do_o_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
    using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
    if(s.log_level_ > 0)
        std::cout << ", " << k_::GetName() << std::flush;
    auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
    constexpr dim3 blocks             = k_::BlockSize();
    constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
    return ck_tile::launch_kernel(s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs));
}}

template<>
void fmha_bwd_dot_do_o_oneshot_<dot_do_o_trait_{F_idx}>(const ck_tile::stream_config& s, fmha_bwd_args a)
{{
    using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
    auto [kargs, grids] = fmha_bwd_dot_do_o_create_kargs_and_grids<k_>(a);
    constexpr dim3 blocks             = k_::BlockSize();
    constexpr ck_tile::index_t kBlockPerCu = k_::kBlockPerCu;
    ck_tile::make_kernel<blocks.x, kBlockPerCu>(k_{{}}, grids, blocks, 0, kargs)(ck_tile::stream_config{{s.stream_id_}});
}}

template<>
std::string fmha_bwd_dot_do_o_get_name_<dot_do_o_trait_{F_idx}>()
{{
    using k_ = fmha_bwd_dot_do_o_kernel_{F_idx};
    return k_::GetName();
}}
"""

@dataclass
class FmhaBwdOGradDotOKernel:
    direction   : str
    F_idx       : int  # this is not a tunable, but a counter to differentiate symbol
    F_hdim      : int  # hdim
    F_dtype     : str  # data type
    F_spad      : str  # true/false
    F_dvpad     : str  #
    F_mode      : str  # value from MODE_MAP
    F_occupancy : int

    @property
    def template(self) -> str:
        return FMHA_BWD_KERNEL_HEADER + \
            FMHA_BWD_DOT_DO_O_KERNEL_BODY.format(
                F_idx       = self.F_idx,
                F_hdim      = self.F_hdim,
                F_dtype     = DTYPE_MAP[self.F_dtype],
                F_spad      = BOOL_MAP[self.F_spad],
                F_dvpad     = BOOL_MAP[self.F_dvpad],
                F_mode      = MODE_MAP[self.F_mode],
                F_occupancy = self.F_occupancy)

    @property
    def name(self) -> str:
        def pad_name() -> str:
            n = ''
            if self.F_spad == 't': n += 's'
            if self.F_dvpad == 't' : n += 'dv'
            if n != '' : n = 'p' + n
            return n
        pn = pad_name()
        n = f"fmha_{self.direction}_d{self.F_hdim}_{self.F_dtype}_{self.F_mode}_o{self.F_occupancy}"
        if pn != '' : n += f'_{pn}'
        return n

    @property
    def filename(self) -> str:
        return self.name + ".cpp"

def get_bwd_dot_do_o_blobs() -> List[FmhaBwdOGradDotOKernel]:
    # TODO: we don't support tuning yet, so pick up one value for pad/occupancy
    #       support this in future
    def get_occupancy(dtype, hdim):
        return 2

    gen = list()

    for direction, dtype in itertools.product(["bwd"], DTYPE_MAP.keys()):
        d = get_fmha_bwd_dq_dk_dv_tile_ppl_dict_from_dtype(direction, dtype)
        if d == None:
            continue
        for hdim_str, mode, spad, dvpad in itertools.product(d.keys(), MODE_MAP.keys(), ["t", "f"], ["t", "f"]):
            hdim = int(hdim_str)
            if (mode == "group" and spad == "f"):
                continue
            k = FmhaBwdOGradDotOKernel(direction=direction+"_dot_do_o", F_idx=0, F_hdim=hdim, F_dtype=dtype,
                                F_spad=spad, F_dvpad=dvpad, F_mode=mode,
                                F_occupancy=get_occupancy(dtype, hdim))
            gen.append(k)

    return gen

def write_single_fwd_kernel(kernel: FmhaFwdKernel, autogen_dir: Path) -> None:
carlushuang's avatar
carlushuang committed
1148
1149
    (autogen_dir / kernel.filename).write_text(kernel.template)

Dan Yao's avatar
Dan Yao committed
1150
def write_fwd_api(api_pool : FmhaFwdApiPool, autogen_dir: Path) -> None:
carlushuang's avatar
carlushuang committed
1151
1152
    (autogen_dir / FMHA_FWD_API_FILENAME).write_text(api_pool.api)

Dan Yao's avatar
Dan Yao committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
def write_single_bwd_dq_dk_dv_kernel(kernel: FmhaBwdDQDKDVKernel, autogen_dir: Path) -> None:
    (autogen_dir / kernel.filename).write_text(kernel.template)

def write_single_bwd_dot_do_o_kernel(kernel: FmhaBwdOGradDotOKernel, autogen_dir: Path) -> None:
    (autogen_dir / kernel.filename).write_text(kernel.template)

def write_bwd_api(api_pool : FmhaBwdApiPool, autogen_dir: Path) -> None:
    (autogen_dir / FMHA_BWD_API_FILENAME).write_text(api_pool.api)

def write_blobs(output_dir: Optional[str], direction: str, kernel_filter : Optional[str], receipt, mask_impl) -> None:
carlushuang's avatar
carlushuang committed
1163
1164
1165
1166
1167
1168
    if output_dir is None:
        output_dir = Path(__file__).parent
    else:
        output_dir = Path(output_dir) / GEN_DIR

    output_dir.mkdir(parents=True, exist_ok=True)
Dan Yao's avatar
Dan Yao committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    if direction == 'fwd':
        api_pool, kernels = get_fwd_blobs(kernel_filter, receipt, mask_impl)
        for kernel in kernels:
            write_single_fwd_kernel(kernel, output_dir)
        write_fwd_api(api_pool, output_dir)
    else:
        kernels = get_bwd_dot_do_o_blobs()
        for kernel in kernels:
            write_single_bwd_dot_do_o_kernel(kernel, output_dir)
        api_pool, kernels = get_bwd_dq_dk_dv_blobs(kernel_filter, receipt, mask_impl)
        for kernel in kernels:
            write_single_bwd_dq_dk_dv_kernel(kernel, output_dir)
        write_bwd_api(api_pool, output_dir)
carlushuang's avatar
carlushuang committed
1182
1183

# list all the files that will be generated
Dan Yao's avatar
Dan Yao committed
1184
def list_blobs(output_file : Optional[str], direction : str, kernel_filter : Optional[str], receipt, mask_impl) -> None:
carlushuang's avatar
carlushuang committed
1185
1186
1187
    assert output_file is not None
    file_path = Path(output_file)
    with file_path.open('a') as f:
Dan Yao's avatar
Dan Yao committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        if direction == 'fwd':
            _, kernels = get_fwd_blobs(kernel_filter, receipt, mask_impl)
            for kernel in kernels:
                f.write(str(file_path.parent / GEN_DIR / kernel.filename) + "\n")
            f.write(str(file_path.parent / GEN_DIR / FMHA_FWD_API_FILENAME) + "\n")
        else:
            kernels = get_bwd_dot_do_o_blobs()
            for kernel in kernels:
                f.write(str(file_path.parent / GEN_DIR / kernel.filename) + "\n")
            _, kernels = get_bwd_dq_dk_dv_blobs(kernel_filter, receipt, mask_impl)
            for kernel in kernels:
                f.write(str(file_path.parent / GEN_DIR / kernel.filename) + "\n")
            f.write(str(file_path.parent / GEN_DIR / FMHA_BWD_API_FILENAME) + "\n")
carlushuang's avatar
carlushuang committed
1201
1202
1203
1204
1205
1206

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        prog="generate",
        description="gen api for CK fmha kernel",
    )
Dan Yao's avatar
Dan Yao committed
1207
1208
1209
1210
1211
1212
1213
1214
    parser.add_argument(
        "-d",
        "--direction",
        default='fwd',
        choices=['fwd', 'bwd'],
        required=False,
        help="choose the direction of kernels(default: fwd)"
    )
carlushuang's avatar
carlushuang committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
    parser.add_argument(
        "-o",
        "--output_dir",
        required=False,
        help="write all the blobs into a directory"
    )
    parser.add_argument(
        "-l",
        "--list_blobs",
        required=False,
        help="list all the kernels to a file"
    )
    # TODO: if using filter, must apply same value to output_dir and list_blobs
    parser.add_argument(
        "-f",
        "--filter",
        required=False,
        help="filter out kernels that need to generate, using fnmatch module"
    )

    parser.add_argument(
        "-m",
        "--mask",
        default="simplified",
        required=False,
        help="mask implementation, simplified/generic"
    )

    parser.add_argument(
        "-r",
        "--receipt",
        default=0,
        required=False,
        help="codegen receipt. 0: generate only 8xhdim coverage\n"  + \
Dan Yao's avatar
Dan Yao committed
1249
1250
             "  1: generate more instance to cover all hdim\n"  + \
             "  2: Only generate instance for Flash attention integration"
carlushuang's avatar
carlushuang committed
1251
1252
1253
1254
    )

    args = parser.parse_args()
    if args.list_blobs is not None:
Dan Yao's avatar
Dan Yao committed
1255
        list_blobs(args.list_blobs, args.direction, args.filter, int(args.receipt), mask_impl=args.mask)
carlushuang's avatar
carlushuang committed
1256
    else:
Dan Yao's avatar
Dan Yao committed
1257
        write_blobs(args.output_dir, args.direction, args.filter, int(args.receipt), mask_impl=args.mask)