reduce_threadwise_impl.hpp 12.5 KB
Newer Older
root's avatar
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
//#include "ck/tensor_operation/gpu/device/impl/device_reduce_threadwise.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_threadwise_multi_d.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_reduce.hpp"

#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"

#include "reduce_example_common.hpp"

template <typename InOutDataType,
          typename AccDataType,
          ck::ReduceTensorOp ReduceOpId,
          ck::index_t Rank,
          ck::index_t NumReduceDim,
          bool PropagateNan,
          bool OutputIndex>
int reduce_threadwise_impl(bool do_verification,
root's avatar
root committed
32
33
34
35
36
37
                           int init_method,
                           bool time_kernel,
                           const std::vector<size_t>& inLengths,
                           const std::array<int, NumReduceDim>& reduceDims,
                           float alpha,
                           float beta)
root's avatar
root committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

{
    using namespace ck;
    using namespace ck::tensor_operation::device;

    constexpr index_t NumOutDim = (Rank - NumReduceDim == 0) ? 1 : Rank - NumReduceDim;

    constexpr bool op_support_indices =
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);

    constexpr bool invalid_reduce_1 = OutputIndex && !op_support_indices;

    // 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
    // operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
    // reduction operations
    constexpr bool invalid_reduce_2 =
        std::is_same<InOutDataType, half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, half_t>::value));

    // 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
    // operations
    constexpr bool invalid_reduce_3 =
        std::is_same<InOutDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // 1) If InOutDataType is int8_t or int4_t, must use int8_t as AccDataType for indexable
    // reduction operations 2) If InOutDataType is int8_t or int4_t, must use int32_t as AccDataType
    // for non-indexable reduction operations
    constexpr bool invalid_reduce_4 =
        std::is_same<InOutDataType, int8_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
         (op_support_indices && !std::is_same<AccDataType, int8_t>::value));

    // 1) If InOutDataType is int8_t or int4_t, the supported operation must be either indexable
    // operations or ADD/AVG
    constexpr bool invalid_reduce_5 = std::is_same<InOutDataType, int8_t>::value &&
                                      (!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
                                       ReduceOpId != ReduceTensorOp::AVG);

    // 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
    constexpr bool invalid_reduce_6 =
        std::is_same<InOutDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
                                     invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);

    if constexpr(invalid_reduce)
    {
        std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
        return (-1);
    };

root's avatar
root committed
92
93
    using PassThrough = tensor_operation::element_wise::PassThrough;
    // using Add         = tensor_operation::element_wise::Add;
root's avatar
root committed
94

root's avatar
root committed
95
96
97
98
99
    using ReduceOperation         = typename reduce_binary_operator<ReduceOpId>::opType;
    using InElementwiseOperation  = PassThrough;
    using OutElementwiseOperation = PassThrough;

    using InOutDataTypeInDevice = InOutDataType;
root's avatar
root committed
100
101
102

    using DeviceReduceInstance =
        ck::tensor_operation::device::DeviceReduceThreadWiseMultiD<InOutDataTypeInDevice,
root's avatar
root committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
                                                                   ck::Tuple<>,
                                                                   AccDataType,
                                                                   InOutDataTypeInDevice,
                                                                   Rank,
                                                                   NumReduceDim,
                                                                   ReduceOperation,
                                                                   InElementwiseOperation,
                                                                   OutElementwiseOperation,
                                                                   256, // BlockSize
                                                                   4,   // MThreadSliceSize
                                                                   1,   // KThreadSliceSize
                                                                   0,   // InSrcVectorDim
                                                                   1,   // InSrceVectorSize
                                                                   1>;  // OutDstVectorSize
root's avatar
root committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

    Tensor<InOutDataType> in(inLengths);

    std::vector<size_t> outLengths;

    auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);

    if(invariantDims.empty())
        outLengths.push_back(1);
    else
        for(auto dim : invariantDims)
            outLengths.push_back(inLengths[dim]);

    Tensor<InOutDataType> out_ref(outLengths);
    Tensor<InOutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    std::size_t num_thread = 1;

    if(do_verification)
    {
        switch(init_method)
        {
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
            break;
        case 2:
            in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
            break;
        default:
            in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
                                            num_thread);
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InOutDataTypeInDevice) * in.mDesc.GetElementSpaceSize());
    DeviceMem out_dev(sizeof(InOutDataTypeInDevice) * out.mDesc.GetElementSpaceSize());

root's avatar
root committed
174
    in_dev.ToDevice(in.mData.data());
root's avatar
root committed
175
176
177
178

    if(beta != 0.0f)
    {

root's avatar
root committed
179
        out_dev.ToDevice(out.mData.data());
root's avatar
root committed
180
181
182
183
184
185
186
    };

    size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;

    DeviceMem out_index_dev(indicesSizeInBytes);

    InElementwiseOperation in_elementwise_op;
root's avatar
root committed
187
    OutElementwiseOperation out_elementwise_op;
root's avatar
root committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    std::array<index_t, Rank> arrInLengths;
    std::array<index_t, Rank> arrInStrides;
    std::array<index_t, NumOutDim> arrOutLengths;
    std::array<index_t, NumOutDim> arrOutStrides;

    ck::ranges::copy(inLengths, arrInLengths.begin());
    ck::ranges::copy(inStrides, arrInStrides.begin());
    ck::ranges::copy(outLengths, arrOutLengths.begin());
    ck::ranges::copy(outStrides, arrOutStrides.begin());

    if(do_verification)
    {
        using ReferenceReduceInstance =
            ck::tensor_operation::host::ReferenceReduce<InOutDataType,
                                                        AccDataType,
                                                        InOutDataType,
                                                        Rank,
                                                        NumReduceDim,
                                                        ReduceOperation,
                                                        InElementwiseOperation,
root's avatar
root committed
209
                                                        PassThrough,
root's avatar
root committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                                                        PropagateNan,
                                                        OutputIndex>;

        auto reduce_ref = ReferenceReduceInstance{};

        auto argument_ptr_ref = reduce_ref.MakeArgumentPointer(arrInLengths,
                                                               arrInStrides,
                                                               arrOutLengths,
                                                               arrOutStrides,
                                                               reduceDims,
                                                               static_cast<double>(alpha),
                                                               static_cast<double>(beta),
                                                               in.mData.data(),
                                                               nullptr,
                                                               out_ref.mData.data(),
                                                               out_indices_ref.mData.data(),
                                                               in_elementwise_op,
root's avatar
root committed
227
                                                               PassThrough{});
root's avatar
root committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        if(!reduce_ref.IsSupportedArgument(argument_ptr_ref.get()))
        {
            std::cout << "The runtime parameters not supported by the reduce reference, exiting!"
                      << std::endl;
            return (false);
        };

        auto invoker_ptr_ref = reduce_ref.MakeInvokerPointer();

        invoker_ptr_ref->Run(argument_ptr_ref.get());
    };

    auto reduce = DeviceReduceInstance{};

    auto argument_ptr = reduce.MakeArgumentPointer(arrInLengths,
                                                   arrInStrides,
root's avatar
root committed
245
246
                                                   {},
                                                   {},
root's avatar
root committed
247
248
249
250
                                                   arrOutLengths,
                                                   arrOutStrides,
                                                   reduceDims,
                                                   in_dev.GetDeviceBuffer(),
root's avatar
root committed
251
                                                   {},
root's avatar
root committed
252
253
                                                   out_dev.GetDeviceBuffer(),
                                                   in_elementwise_op,
root's avatar
root committed
254
                                                   out_elementwise_op);
root's avatar
root committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cerr << "The runtime parameters not supported by the DeviceReduce instance, exiting!"
                  << std::endl;

        return (-2);
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
                            invariant_total_length * sizeof(InOutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

    bool pass = true;

    if(do_verification)
    {

root's avatar
root committed
283
        out_dev.FromDevice(out.mData.data());
root's avatar
root committed
284
285
286
287
288
289
290
291
292
293
294
295

        pass = pass && ck::utils::check_err(out, out_ref);

        if(OutputIndex)
        {
            out_index_dev.FromDevice(out_indices.mData.data());
            pass = pass && ck::utils::check_err(out_indices, out_indices_ref);
        };
    };

    return (pass ? 0 : 1);
}