amd_ck_fp8.hpp 35.7 KB
Newer Older
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#pragma once

#include "ck/utility/random_gen.hpp"
#include "ck/utility/type.hpp"

#ifdef CK_USE_FNUZ_FP8
#define CK_USE_FNUZ_FP8 1
#else
#define CK_USE_FNUZ_FP8 0
#endif

#ifdef CK_USE_OCP_FP8
#define CK_USE_OCP_FP8 1
#else
#define CK_USE_OCP_FP8 0
#endif

namespace ck {

using f8_fnuz_t  = _BitInt(8);
using bf8_fnuz_t = unsigned _BitInt(8);

#if(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx1200__) || \
    defined(__gfx1201__) || defined(__gfx950__)) &&                                              \
    __HIP_DEVICE_COMPILE__
#define CK_FP8_CVT_FAST_PATH 1
#else
#define CK_FP8_CVT_FAST_PATH 0
#endif

34
#if(defined(__gfx1200__) || defined(__gfx1201__) || defined(__gfx950__)) && __HIP_DEVICE_COMPILE__
35
#define CK_OCP_FP8_CVT_FAST_PATH 1
36
#else
37
#define CK_OCP_FP8_CVT_FAST_PATH 0
38
39
#endif

40
41
42
43
44
typedef unsigned char fp8_storage_t;

/**
 * \brief Describes FP8 interpretation
 */
45
enum class ck_fp8_interpretation_t
46
47
48
49
50
51
52
53
54
55
{
    CK_E4M3_OCP  = 0, // OCP E4M3
    CK_E5M2_OCP  = 1, // OCP E5M2
    CK_E4M3_FNUZ = 2, // FP8
    CK_E5M2_FNUZ = 3, // BF8
};

/**
 * \brief Describes saturation behavior
 */
56
enum class ck_saturation_t
57
58
59
60
61
62
63
{
    CK_NOSAT     = 0, // No saturation - replace with NaN or Inf
    CK_SATFINITE = 1, // Saturate to finite
};

namespace fp8_impl {

64
65
66
typedef fp8_storage_t fp8x2_storage_t __attribute__((ext_vector_type(2)));
typedef float float2_t __attribute__((ext_vector_type(2)));

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
__host__ __device__ static inline constexpr bool fnuz_f8_is_nan(f8_fnuz_t a)
{
    return static_cast<unsigned char>(a) == 0x80;
}
__host__ __device__ static inline constexpr bool fnuz_bf8_is_nan(bf8_fnuz_t a)
{
    return static_cast<unsigned char>(a) == 0x80;
}

__host__ __device__ static inline constexpr bool ocp_f8_is_nan(fp8_storage_t a)
{
    return (a & 0x7f) == 0x7f;
}
__host__ __device__ static inline constexpr bool ocp_bf8_is_nan(fp8_storage_t a)
{
    return (a & 0x7f) > 0x7c;
}

// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L220
// This has been modified to handle double types as well
template <typename T, int wm, int we, bool is_fnuz, bool clip = false>
__host__ __device__ static inline T cast_from_f8(fp8_storage_t x)
{
    constexpr bool is_half   = __hip_internal::is_same<T, _Float16>::value;
    constexpr bool is_float  = __hip_internal::is_same<T, float>::value;
    constexpr bool is_double = __hip_internal::is_same<T, double>::value;
    static_assert(is_half || is_float || is_double, "only half, float and double are supported");

    constexpr int weo = is_half ? 5 : (is_float ? 8 : 11);
    constexpr int wmo = is_half ? 10 : (is_float ? 23 : 52);

    T fInf, fNegInf, fNaN, fNeg0, fmax, fmin;
    if constexpr(is_half)
    {
        const unsigned short int ihInf    = 0x7C00;
        const unsigned short int ihNegInf = 0xFC00;
        const unsigned short int ihNaN    = 0x7C01;
        const unsigned short int ihNeg0   = 0x8000;
        /* Max number in e5m2 57344*/
        const unsigned short int ifmax = 0x7B00;
        const unsigned short int ifmin = 0xFB00;

        fInf    = bit_cast<_Float16>(ihInf);
        fNegInf = bit_cast<_Float16>(ihNegInf);
        fNaN    = bit_cast<_Float16>(ihNaN);
        fNeg0   = bit_cast<_Float16>(ihNeg0);
        fmax    = bit_cast<_Float16>(ifmax);
        fmin    = bit_cast<_Float16>(ifmin);
    }
117
    else if constexpr(is_float)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    {
        const unsigned int ifInf    = 0x7F800000;
        const unsigned int ifNegInf = 0xFF800000;
        const unsigned int ifNaN    = 0x7F800001;
        const unsigned int ifNeg0   = 0x80000000;
        /* Max number in e5m2 57344*/
        const unsigned int ifmax = 0x47600000;
        const unsigned int ifmin = 0xC7600000;

        fInf    = bit_cast<float>(ifInf);
        fNegInf = bit_cast<float>(ifNegInf);
        fNaN    = bit_cast<float>(ifNaN);
        fNeg0   = bit_cast<float>(ifNeg0);
        fmax    = bit_cast<float>(ifmax);
        fmin    = bit_cast<float>(ifmin);
    }
134
    else if constexpr(is_double)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    {
        const unsigned long long ifInf    = 0x7FF0000000000000ull;
        const unsigned long long ifNegInf = 0xFFF0000000000000ull;
        const unsigned long long ifNaN    = 0x7FF0000000000001ull;
        const unsigned long long ifNeg0   = 0x8000000000000000ull;
        /* Max number in e5m2 57344*/
        const unsigned long long ifmax = 0x40EC000000000000ull;
        const unsigned long long ifmin = 0xC0EC000000000000ull;

        fInf    = bit_cast<double>(ifInf);
        fNegInf = bit_cast<double>(ifNegInf);
        fNaN    = bit_cast<double>(ifNaN);
        fNeg0   = bit_cast<double>(ifNeg0);
        fmax    = bit_cast<double>(ifmax);
        fmin    = bit_cast<double>(ifmin);
    }

    if(x == 0)
    {
        return 0;
    }

    unsigned long long sign     = x >> 7;
    unsigned long long mantissa = x & ((1 << wm) - 1);
    int exponent                = (x & 0x7F) >> wm;
    if constexpr(is_fnuz)
    {
        if(x == 0x80)
        {
            return fNaN;
        }
    }
    else
    {
        if(x == 0x80)
        {
            return fNeg0;
        }
173
        if constexpr(we == 4)
174
175
176
177
178
179
180
181
182
183
        { // e4m3
            if((x & 0x7F) == 0x7F)
            {
                return fNaN;
            }
        }
        else if((x & 0x7C) == 0x7C)
        { // e5m2
            if((x & 0x3) == 0)
            {
184
                if constexpr(clip)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                {
                    return sign ? fmin : fmax;
                }
                return sign ? fNegInf : fInf;
            }
            return fNaN;
        }
    }

    typename __hip_internal::conditional<
        sizeof(T) == 2,
        unsigned short int,
        typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
            type>::type retval;

200
    if constexpr(we == 5 && is_half && !is_fnuz)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    {
        retval = x << 8;
        return bit_cast<T>(retval);
    }

    const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (is_fnuz ? 1 : 0);

    // subnormal input
    if(exponent == 0)
    {
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
        // guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
        int sh = 1 + __clz(mantissa) - (32 - wm);
#else
        int sh = 1 + __builtin_clz(mantissa) - (32 - wm);
#endif
        mantissa <<= sh;
        exponent += 1 - sh;
        mantissa &= ((1ull << wm) - 1);
    }
    exponent += exp_low_cutoff - 1;
    mantissa <<= wmo - wm;

    // subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
    if(exponent <= 0)
    {
        mantissa |= 1 << wmo;
        mantissa >>= 1 - exponent;
        exponent = 0;
    }

    if constexpr(sizeof(T) == 2)
        retval = (sign << 15) | (exponent << 10) | mantissa;
234
    else if constexpr(sizeof(T) == 4)
235
236
237
        retval = (sign << 31) | (exponent << 23) | mantissa;
    else
        retval = (sign << 63) | (static_cast<unsigned long long>(exponent) << 52) | mantissa;
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
    return bit_cast<T>(retval);
}

#if CK_FP8_CVT_FAST_PATH
template <ck_fp8_interpretation_t interpret>
static __device__ float cast_to_f32_from_f8(fp8_storage_t v)
{
    union
    {
        unsigned int i32val;
        unsigned char i8val[4];
    } val;
    val.i8val[0] = v;

253
254
255
256
    static_assert(interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ ||
                      interpret == ck_fp8_interpretation_t::CK_E4M3_OCP ||
                      interpret == ck_fp8_interpretation_t::CK_E5M2_FNUZ ||
                      interpret == ck_fp8_interpretation_t::CK_E5M2_OCP,
257
258
                  "Only FNUZ and OCP interpretations are supported");

259
260
    if constexpr((interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
                 (interpret == ck_fp8_interpretation_t::CK_E4M3_OCP))
261
262
263
264
265
266
267
268
    {
        return __builtin_amdgcn_cvt_f32_fp8(val.i32val, 0);
    }
    else
    {
        return __builtin_amdgcn_cvt_f32_bf8(val.i32val, 0);
    }
}
269
270
271
272
273
274

template <ck_fp8_interpretation_t interpret>
static __device__ float2_t cast_to_f32x2_from_f8x2(fp8x2_storage_t v)
{
    const auto i16val = bit_cast<uint16_t>(v);

275
276
277
278
    static_assert(interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ ||
                      interpret == ck_fp8_interpretation_t::CK_E4M3_OCP ||
                      interpret == ck_fp8_interpretation_t::CK_E5M2_FNUZ ||
                      interpret == ck_fp8_interpretation_t::CK_E5M2_OCP,
279
280
                  "Only FNUZ and OCP interpretations are supported");

281
282
    if constexpr((interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
                 (interpret == ck_fp8_interpretation_t::CK_E4M3_OCP))
283
284
285
286
287
288
289
290
291
    {
        return __builtin_amdgcn_cvt_pk_f32_fp8(i16val, false);
    }
    else
    {
        return __builtin_amdgcn_cvt_pk_f32_bf8(i16val, false);
    }
}

292
293
294
295
#endif

} // namespace fp8_impl

296
297
298
template <typename T, index_t N>
struct non_native_vector_base;

299
300
301
302
303
struct f8_ocp_t
{
    using data_type = fp8_storage_t;
    data_type data;

304
305
306
    static constexpr ck_saturation_t default_saturation = ck_saturation_t::CK_SATFINITE;
    static constexpr ck_fp8_interpretation_t default_interpret =
        ck_fp8_interpretation_t::CK_E4M3_OCP;
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    static constexpr unsigned int we = 4; // exponent width
    static constexpr unsigned int wm = 3; // mantissa width

    __host__ __device__ constexpr bool operator==(const f8_ocp_t& other) const
    {
        return (data == other.data) && (fp8_impl::ocp_f8_is_nan(data) == false); // NaN != NaN
    }

#if CK_USE_OCP_FP8
    __host__ __device__ explicit operator float() const
#else
    __host__ explicit operator float() const
#endif
    {
322
#if CK_OCP_FP8_CVT_FAST_PATH
323
324
325
326
327
328
329
330
331
332
333
334
335
        return fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data);
#else
        return fp8_impl::cast_from_f8<float, wm, we, false>(
            this->data); // XXX: clip==false must be consistent with operator _Float16
#endif
    }

#if CK_USE_OCP_FP8
    __host__ __device__ explicit operator _Float16() const
#else
    __host__ explicit operator _Float16() const
#endif
    {
336
#if CK_OCP_FP8_CVT_FAST_PATH
337
338
339
340
341
342
343
344
        return static_cast<_Float16>(fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data));
#else
        return fp8_impl::cast_from_f8<_Float16, wm, we, false>(
            this->data); // XXX: clip==false must be consistent with operator float
#endif
    }
};

345
346
347
348
349
struct bf8_ocp_t
{
    using data_type = fp8_storage_t;
    data_type data;

350
351
352
    static constexpr ck_saturation_t default_saturation = ck_saturation_t::CK_SATFINITE;
    static constexpr ck_fp8_interpretation_t default_interpret =
        ck_fp8_interpretation_t::CK_E5M2_OCP;
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

    static constexpr unsigned int we = 5; // exponent width
    static constexpr unsigned int wm = 2; // mantissa width

    __host__ __device__ constexpr bool operator==(const bf8_ocp_t& other) const
    {
        return (data == other.data) && (fp8_impl::ocp_bf8_is_nan(data) == false); // NaN != NaN
    }

#if CK_USE_OCP_FP8
    __host__ __device__ explicit operator float() const

#else
    __host__ explicit operator float() const
#endif
    {
#if defined(__gfx950__) || defined(__gfx1200__) || defined(__gfx1201__)
        return fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data);
#else
        return fp8_impl::cast_from_f8<float, wm, we, false>(
            this->data); // XXX: clip==false must be consistent with operator _Float16
#endif
    }

#if CK_USE_OCP_FP8
    __host__ __device__ explicit operator _Float16() const
#else
    __host__ explicit operator _Float16() const
#endif
    {
#if defined(__gfx950__) || defined(__gfx1200__) || defined(__gfx1201__)
        return static_cast<_Float16>(fp8_impl::cast_to_f32_from_f8<default_interpret>(this->data));
#else
        return fp8_impl::cast_from_f8<_Float16, wm, we, false>(
            this->data); // XXX: clip==false must be consistent with operator float
#endif
    }
};
391
392
393
394
395

template <index_t N>
struct non_native_vector_base<f8_ocp_t, N>
{
    using data_t = f8_ocp_t::data_type;
396
397
    static_assert(sizeof(f8_ocp_t) == sizeof(data_t),
                  "non_native_vector_base storage size mismatch");
398
399
400
401
402
403
404
    using data_v = data_t __attribute__((ext_vector_type(sizeof(data_t) * N)));
    using type   = non_native_vector_base<f8_ocp_t, N>;

    data_v d; // storage vector

    __host__ __device__ non_native_vector_base() = default;
    __host__ __device__ non_native_vector_base(data_t a) : d{a} {}
405
    __host__ __device__ non_native_vector_base(f8_ocp_t f) : non_native_vector_base(f.data) {}
406
407
408
409
410
    __host__ __device__ non_native_vector_base(data_v v) : d{v} {}

    __host__ __device__ operator data_v() const { return d; }
};

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
template <>
struct non_native_vector_base<f8_ocp_t, 1>
{
    using data_t = f8_ocp_t::data_type;
    using data_v = data_t __attribute__((ext_vector_type(sizeof(data_t))));
    using type   = non_native_vector_base<f8_ocp_t, 1>;

    data_v d; // storage vector

    __host__ __device__ non_native_vector_base() = default;
    __host__ __device__ non_native_vector_base(data_t a) : d{a} {}
    __host__ __device__ non_native_vector_base(f8_ocp_t f) : non_native_vector_base(f.data) {}
    __host__ __device__ non_native_vector_base(data_v v) : d{v} {}

    __host__ __device__ operator data_v() const { return d; }
    __host__ __device__ operator data_t() const { return d[0]; }
    __host__ __device__ operator f8_ocp_t() const { return f8_ocp_t{d[0]}; }
};

430
431
432
433
434
435
436
437
template <>
struct non_native_vector_base<f8_ocp_t, 2>
{
    using data_t = f8_ocp_t::data_type;
    using type   = non_native_vector_base<f8_ocp_t, 2>;
    using data_v = fp8_impl::fp8x2_storage_t; // type of storage vector
    data_v d;                                 // storage vector

Andriy Roshchenko's avatar
Andriy Roshchenko committed
438
439
    __host__ __device__ non_native_vector_base() = default;
    __host__ __device__ non_native_vector_base(data_t a) : d{a} {}
440
441
442
443
    __host__ __device__ non_native_vector_base(f8_ocp_t f) : non_native_vector_base(f.data) {}
    __host__ __device__ non_native_vector_base(data_v v) : d{v} {}

    __host__ __device__ operator data_v() const { return d; }
Andriy Roshchenko's avatar
Andriy Roshchenko committed
444

445
446
447
448
449
450
451
452
    using float2_t = fp8_impl::float2_t;

#if CK_USE_OCP_FP8
    __host__ __device__ explicit operator float2_t() const
#else
    __host__ explicit operator float2_t() const
#endif
    {
453
#if CK_OCP_FP8_CVT_FAST_PATH
454
455
456
457
458
459
460
461
        return fp8_impl::cast_to_f32x2_from_f8x2<f8_ocp_t::default_interpret>(d);
#else
        return float2_t{fp8_impl::cast_from_f8<float, f8_ocp_t::wm, f8_ocp_t::we, false>(d[0]),
                        fp8_impl::cast_from_f8<float, f8_ocp_t::wm, f8_ocp_t::we, false>(d[1])};
#endif
    }
};

462
463
template <index_t N>
struct non_native_vector_base<bf8_ocp_t, N>
464
{
465
466
467
    using data_t = bf8_ocp_t::data_type;
    using data_v = data_t __attribute__((ext_vector_type(sizeof(data_t) * N)));
    using type   = non_native_vector_base<bf8_ocp_t, N>;
468

469
    data_v d; // storage vector
470

471
472
473
    __host__ __device__ non_native_vector_base() = default;
    __host__ __device__ non_native_vector_base(data_t a) : d{a} {}
    __host__ __device__ non_native_vector_base(data_v v) : d{v} {}
474

475
    __host__ __device__ operator data_v() const { return d; }
476
477
};

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
template <>
struct non_native_vector_base<bf8_ocp_t, 1>
{
    using data_t = bf8_ocp_t::data_type;
    using data_v = data_t __attribute__((ext_vector_type(sizeof(data_t))));
    using type   = non_native_vector_base<bf8_ocp_t, 1>;

    data_v d; // storage vector

    __host__ __device__ non_native_vector_base() = default;
    __host__ __device__ non_native_vector_base(data_t a) : d{a} {}
    __host__ __device__ non_native_vector_base(bf8_ocp_t f) : non_native_vector_base(f.data) {}
    __host__ __device__ non_native_vector_base(data_v v) : d{v} {}

    __host__ __device__ operator data_v() const { return d; }
    __host__ __device__ operator data_t() const { return d[0]; }
494
    __host__ __device__ operator bf8_ocp_t() const { return bf8_ocp_t{d[0]}; }
495
496
};

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
template <typename T>
__host__ __device__ static inline constexpr bool fp8_is_nan(T);

template <>
__host__ __device__ inline constexpr bool fp8_is_nan(f8_ocp_t a)
{
    return fp8_impl::ocp_f8_is_nan(a.data);
}
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(bf8_ocp_t a)
{
    return fp8_impl::ocp_bf8_is_nan(a.data);
}
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(f8_fnuz_t a)
{
    return fp8_impl::fnuz_f8_is_nan(a);
}
template <>
__host__ __device__ inline constexpr bool fp8_is_nan(bf8_fnuz_t a)
{
    return fp8_impl::fnuz_bf8_is_nan(a);
}

521
522
523
524
525
526
527
528
529
530
531
532
533
534
template <typename T,
          std::enable_if_t<std::is_same_v<T, bf8_ocp_t> || std::is_same_v<T, f8_ocp_t> ||
                               std::is_same_v<T, bf8_fnuz_t> || std::is_same_v<T, f8_fnuz_t>,
                           bool> = true>
__host__ __device__ static inline constexpr bool fp8_is_inf(T)
{
    return false;
}
template <>
__host__ __device__ inline constexpr bool fp8_is_inf(bf8_ocp_t a)
{
    return (a.data & 0x7f) == 0x7c;
}

535
536
namespace fp8_impl {

537
538
539
// Assertions to check for supported conversion types
#define __assert_ocp_support(interp)                                               \
    {                                                                              \
540
541
        if(interp != ck_fp8_interpretation_t::CK_E4M3_OCP &&                       \
           interp != ck_fp8_interpretation_t::CK_E5M2_OCP)                         \
542
543
544
545
546
547
        {                                                                          \
            __hip_assert(false && "type is unsupported by current target device"); \
        }                                                                          \
    }
#define __assert_fnuz_support(interp)                                              \
    {                                                                              \
548
549
        if(interp != ck_fp8_interpretation_t::CK_E4M3_FNUZ &&                      \
           interp != ck_fp8_interpretation_t::CK_E5M2_FNUZ)                        \
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        {                                                                          \
            __hip_assert(false && "type is unsupported by current target device"); \
        }                                                                          \
    }

__host__ __device__ static inline void
__is_interpret_supported([[maybe_unused]] ck_fp8_interpretation_t interp)
{
#if defined(__HIP_DEVICE_COMPILE__) && __HIP_DEVICE_COMPILE__
#if CK_USE_OCP_FP8
    __assert_ocp_support(interp);
#endif
#if CK_USE_FNUZ_FP8
    __assert_fnuz_support(interp);
#endif
#endif
}

#if CK_FP8_CVT_FAST_PATH
// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_float8.h#L79
template <ck_fp8_interpretation_t interpret, bool saturate, bool stochastic_rounding = false>
static __device__ fp8_storage_t cast_to_f8_from_f32(float v, unsigned int rng = 0)
{
    fp8_storage_t i8data;
    union
    {
        float fval;
        unsigned int i32val;
        unsigned char i8val[4]; // NOTE: not endian independent
    } val;

    unsigned int ival = 0;
    val.fval          = v;

    if constexpr(saturate)
    {
587
        if constexpr(interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ)
588
589
590
591
592
593
        {
            if((val.i32val & 0x7F800000) != 0x7F800000)
            { /// propagate NAN/INF, no clipping
                val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
            }
        }
594
        else if constexpr(interpret == ck_fp8_interpretation_t::CK_E4M3_OCP)
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        { // OCP type
            if((val.i32val & 0x7F800000) != 0x7F800000)
            { /// propagate NAN/INF, no clipping
                val.fval = __builtin_amdgcn_fmed3f(val.fval, 448.0, -448.0);
            }
        }
        else
        {
            if((val.i32val & 0x7F800000) != 0x7F800000)
            { /// propagate NAN/INF, no clipping
                val.fval = __builtin_amdgcn_fmed3f(val.fval, 57344.0, -57344.0);
            }
        }
    }

    if constexpr(stochastic_rounding)
    {
612
613
        ival       = (interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
                       (interpret == ck_fp8_interpretation_t::CK_E4M3_OCP)
614
615
616
617
618
619
620
                         ? __builtin_amdgcn_cvt_sr_fp8_f32(val.fval, rng, ival, 0)
                         : __builtin_amdgcn_cvt_sr_bf8_f32(val.fval, rng, ival, 0); // 0 pos
        val.i32val = ival;
        i8data     = val.i8val[0]; // little endian
    }
    else
    { // RNE CVT
621
622
        ival       = (interpret == ck_fp8_interpretation_t::CK_E4M3_FNUZ) ||
                       (interpret == ck_fp8_interpretation_t::CK_E4M3_OCP)
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
                         ? __builtin_amdgcn_cvt_pk_fp8_f32(val.fval, val.fval, ival, false)
                         : __builtin_amdgcn_cvt_pk_bf8_f32(val.fval,
                                                     val.fval,
                                                     ival,
                                                     false); // false -> WORD0
        val.i32val = ival;
        i8data     = val.i8val[0];
    }
    return i8data;
}
#endif // CK_FP8_CVT_FAST_PATH

// The conversion function is from rocblas
// https://github.com/ROCm/rocBLAS/blob/9b7f692abe3c54b88d1e77e045a7db7f1f188b69/library/include/internal/rocblas_hip_f8_impl.h#L39
// This has been modified to add double types conversion as well
template <typename T, int wm, int we, bool is_fnuz, bool clip = false, bool stoch = false>
__host__ __device__ static inline fp8_storage_t cast_to_f8(T _x, unsigned int rng = 0)
{
    constexpr bool is_half   = __hip_internal::is_same<T, _Float16>::value;
    constexpr bool is_float  = __hip_internal::is_same<T, float>::value;
    constexpr bool is_double = __hip_internal::is_same<T, double>::value;
    static_assert(is_half || is_float || is_double,
                  "Only half, float and double can be cast to f8");

    constexpr int mfmt = (sizeof(T) == 8) ? 52 : ((sizeof(T) == 4) ? 23 : 10);

    using T_bitwise = typename __hip_internal::conditional<
        sizeof(T) == 2,
        unsigned short int,
        typename __hip_internal::conditional<sizeof(T) == 4, unsigned int, unsigned long long>::
            type>::type;
    T_bitwise x_bitwise = bit_cast<T_bitwise>(_x);

    unsigned long long x{x_bitwise};

    unsigned long long head, mantissa;
    int exponent, bias;
    unsigned int sign;
    unsigned long long fInf, mask;

    if constexpr(sizeof(T) == 8)
    {
        head     = x & 0xFFF0000000000000ull;
        mantissa = x & 0xFFFFFFFFFFFFFull;
        exponent = (head >> 52) & 0x7FF;
        sign     = head >> 63;
        bias     = 1023;
        fInf     = 0x7FF0000000000000ull;
        mask     = 0x7FFFFFFFFFFFFFFFull;
    }
673
    else if constexpr(sizeof(T) == 4)
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
    {
        head     = x & 0xFF800000;
        mantissa = x & 0x7FFFFF;
        exponent = (head >> 23) & 0xFF;
        sign     = head >> 31;
        bias     = 127;
        fInf     = 0x7F800000;
        mask     = 0x7FFFFFFF;
    }
    else
    {
        head     = x & 0xFC00;
        mantissa = x & 0x3FF;
        exponent = (head >> 10) & 0x1F;
        sign     = head >> 15;
        bias     = 15;
        fInf     = 0x7C00;
        mask     = 0x7FFF;
    }
    unsigned int signed_inf = 0;
    unsigned int nan        = 0;
    if constexpr(is_fnuz)
    {
        signed_inf = clip ? ((sign << 7) + 0x7f) : 0x80;
        nan        = 0x80;
    }
    else
    {
702
        if constexpr(we == 4)
703
704
705
706
707
708
709
710
711
712
713
714
715
        { // e4m3
            signed_inf = (sign << 7) + (clip ? 0x7e : 0x7f);
        }
        else
        { // e5m2
            signed_inf = (sign << 7) + (clip ? 0x7b : 0x7c);
        }
        nan = (sign << 7) + 0x7f;
    }
    // Max values
    unsigned long long ifmax = 0;
    if constexpr(sizeof(T) == 8)
    {
716
        if constexpr(we == 5)
717
718
719
720
721
        { // 57344
            ifmax = 0x40EC000000000000ull;
        }
        else
        {
722
            if constexpr(is_fnuz)
723
724
725
726
727
728
729
730
731
732
733
            { // 240
                ifmax = 0x406E000000000000ull;
            }
            else
            { // 448
                ifmax = 0x407C000000000000ull;
            }
        }
    }
    else if(sizeof(T) == 4)
    {
734
        if constexpr(we == 5)
735
736
737
738
739
        {
            ifmax = 0x47600000;
        }
        else
        {
740
            if constexpr(is_fnuz)
741
742
743
744
745
746
747
748
749
750
751
            {
                ifmax = 0x43700000;
            }
            else
            {
                ifmax = 0x43E00000;
            }
        }
    }
    else
    {
752
        if constexpr(we == 5)
753
754
755
756
757
        {
            ifmax = 0x7B00;
        }
        else
        {
758
            if constexpr(is_fnuz)
759
760
761
762
763
764
765
766
767
768
769
770
            {
                ifmax = 0x5B80;
            }
            else
            {
                ifmax = 0x5F00;
            }
        }
    }
    // Deal with inf and NaNs
    if((x & fInf) == fInf)
    {
771
        if constexpr(is_fnuz)
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
            return signed_inf;

        return mantissa != 0 ? nan : signed_inf;
    }

    if((x & mask) > ifmax)
    {
        return signed_inf;
    }

    if(x == 0)
    {
        return 0;
    }

    // First need to check if it is normal or denorm as there is a difference of
    // implicit 1 Then need to adjust the exponent to align with the F8 exponent,
    // in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
    // to mantissa and truncate. And for RNE, no need to add rng. Then probably
    // need to check whether there is carry and adjust exponent and mantissa again

    // For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
    // bits
    const int f8_bias                  = (1 << (we - 1)) - 1 + (is_fnuz ? 1 : 0);
    const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
    // act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
    // f8_exponent is the converted f8 exponent with bias encoding
    // exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
    // the difference needs to be adjusted and mantissa shifted
    int act_exponent, f8_exponent, exponent_diff;

    if(exponent == 0)
    { // fp32/fp16 is in denormal.
        /* fp32 denormal is below 2^-127 so it is usually not a concern here, we
    mostly concern fp16 here. In this case, f8 is usually in denormal. But there
    could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
    exponent bias 16. It means that there are some numbers in fp16 denormal but they
    are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
    where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
    (NANOO) normal. In this case, the fp16 mantissa should be shift left by 1  */
        act_exponent  = exponent - bias + 1;
        exponent_diff = f8_denormal_act_exponent -
                        act_exponent; // actual exponent is exponent-bias+1 as it is denormal
    }
    else
    { // fp32/fp16 is normal with implicit 1
        act_exponent = exponent - bias;
        if(act_exponent <= f8_denormal_act_exponent)
        {
            /* This is the case where fp32/fp16 is normal but it is in f8 denormal
      range. For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
      actual exponent is -7, it is actually larger due to the implicit 1,
      Therefore it needs to be adjust to -6 and mantissa shift right by 1.
      So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
            exponent_diff = f8_denormal_act_exponent - act_exponent;
        }
        else
        {                      // both fp32/fp16 and f8 are in normal range
            exponent_diff = 0; // exponent_diff=0 does not mean there is no difference
                               // for this case, act_exponent could be larger. Just
                               // that it does not need shift mantissa
        }
        mantissa += (1ull << mfmt); // Add the implicit 1 into mantissa
    }

    bool midpoint = (mantissa & ((1ull << (mfmt - wm + exponent_diff)) - 1)) ==
                    (1ull << (mfmt - wm + exponent_diff - 1));
    /* This part is a bit tricky. The judgment of whether it is a tie needs to be
  done before we shift right as shift right could rip off some residual part and
  make something not midpoint look like midpoint. For example, the fp16 number
  0x1002 (0 00100 0000000010), it is larger than midpoint, but after shift right
  by 4 bits, it would look like midpoint.
  */

    if(exponent_diff > 0)
        mantissa >>= exponent_diff;
    else if(exponent_diff == -1)
        mantissa <<= -exponent_diff;
    bool implicit_one = mantissa & (1ull << mfmt);
    // if there is no implicit 1, it  means the f8 is denormal and need to adjust
    // to denorm exponent
    f8_exponent =
        (act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);

    // Now we have the exponent and mantissa adjusted
    unsigned long long drop_mask = (1ull << (mfmt - wm)) - 1;
    bool odd =
        mantissa & (1ull << (mfmt - wm)); // if the least significant bit that is not truncated is 1
    mantissa +=
        (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1ull) : mantissa)) & drop_mask;

    // Now we deal with overflow
    if(f8_exponent == 0)
    {
        if((1ull << mfmt) & mantissa)
        {
            f8_exponent = 1; // denormal overflow to become normal, promote exponent
        }
    }
    else
    {
        if((1ull << (mfmt + 1)) & mantissa)
        {
            mantissa >>= 1;
            f8_exponent++;
        }
    }

    mantissa >>= (mfmt - wm);

    // above range: quantize to maximum possible float of the same sign
    const int max_exp = (1 << we) - 1;
    if(f8_exponent > max_exp)
    {
886
        if constexpr(clip)
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        {
            mantissa    = (1 << wm) - 1;
            f8_exponent = max_exp;
        }
        else
        {
            return signed_inf;
        }
    }

    if(f8_exponent == 0 && mantissa == 0)
        return is_fnuz ? 0 : (sign << 7);
    mantissa &= (1 << wm) - 1;
    return (sign << 7) | (f8_exponent << wm) | mantissa;
}

/**
 * \brief convert float to @p fp8_storage_t
 *
 * \tparam interp interpretation of fp8
 * \tparam sat saturation of fp8
 * \param f float number
 * \return fp8_storage_t
 */
template <ck_fp8_interpretation_t interp,
912
          ck_saturation_t sat      = ck_saturation_t::CK_SATFINITE,
913
914
915
916
917
918
919
920
921
922
923
          bool stochastic_rounding = false>
#if CK_FP8_CVT_FAST_PATH
__host__ __device__ static inline fp8_storage_t cvt_float_to_fp8(const float f)
{
    __is_interpret_supported(interp);
    uint32_t rng = 0;
    if constexpr(stochastic_rounding)
    {
        constexpr int seed = 1254739;
        rng                = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&f), f);
    }
924
925
    return cast_to_f8_from_f32<interp, sat == ck_saturation_t::CK_SATFINITE, stochastic_rounding>(
        f, rng);
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
#else
#if CK_USE_OCP_FP8
__host__ __device__ static inline fp8_storage_t cvt_float_to_fp8(const float f)
{
#else
__host__ static inline fp8_storage_t cvt_float_to_fp8(const float f)
{
#endif
    uint32_t rng = 0;
    if constexpr(stochastic_rounding)
    {
        constexpr int seed = 1254739;
        rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&f), f);
    }

941
    if constexpr(interp == ck_fp8_interpretation_t::CK_E4M3_FNUZ)
942
    {
943
944
945
946
947
948
        return cast_to_f8<float,
                          3,
                          4,
                          true,
                          sat == ck_saturation_t::CK_SATFINITE,
                          stochastic_rounding>(f, rng);
949
    }
950
    else if constexpr(interp == ck_fp8_interpretation_t::CK_E5M2_FNUZ)
951
    {
952
953
954
955
956
957
        return cast_to_f8<float,
                          2,
                          5,
                          true,
                          sat == ck_saturation_t::CK_SATFINITE,
                          stochastic_rounding>(f, rng);
958
    }
959
    else if constexpr(interp == ck_fp8_interpretation_t::CK_E4M3_OCP)
960
    {
961
962
963
964
965
966
        return cast_to_f8<float,
                          3,
                          4,
                          false,
                          sat == ck_saturation_t::CK_SATFINITE,
                          stochastic_rounding>(f, rng);
967
    }
968
    else if constexpr(interp == ck_fp8_interpretation_t::CK_E5M2_OCP)
969
    {
970
971
972
973
974
975
        return cast_to_f8<float,
                          2,
                          5,
                          false,
                          sat == ck_saturation_t::CK_SATFINITE,
                          stochastic_rounding>(f, rng);
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
    }
    else
    {
        __hip_assert(false && "FP8 type is not supported by current target device");
        return 0;
    }
#endif // CK_FP8_CVT_FAST_PATH
}

/**
 * \brief convert _Float16 to @p fp8_storage_t
 *
 * \tparam sat saturation of fp8
 * \tparam interp interpretation of fp8
 * \tparam stochastic_rounding switch between RNE and SR
 * \param x _Float16 value
 * \return fp8_storage_t
 */
template <ck_fp8_interpretation_t interp,
995
          ck_saturation_t sat      = ck_saturation_t::CK_SATFINITE,
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
          bool stochastic_rounding = false>
#if CK_FP8_CVT_FAST_PATH || CK_USE_OCP_FP8
__host__ __device__ static inline fp8_storage_t cvt_half_t_to_fp8(const _Float16 x)
#else
__host__ static inline fp8_storage_t cvt_half_t_to_fp8(const _Float16 x)
#endif
{
    return cvt_float_to_fp8<interp, sat, stochastic_rounding>(static_cast<float>(x));
}

} // namespace fp8_impl

// Declare a template function for fp8 conversion using RNE
template <typename Y, typename X>
__host__ __device__ constexpr Y f8_convert_rne(X x);

// convert fp32 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_ocp_t f8_convert_rne<f8_ocp_t, float>(float x)
{
    return f8_ocp_t{
        fp8_impl::cvt_float_to_fp8<f8_ocp_t::default_interpret, f8_ocp_t::default_saturation>(x)};
}

// convert fp32 to bf8 with rounding to nearest even
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_rne<bf8_ocp_t, float>(float x)
{
    return bf8_ocp_t{
        fp8_impl::cvt_float_to_fp8<bf8_ocp_t::default_interpret, bf8_ocp_t::default_saturation>(x)};
}

// convert _Float16 to fp8 with rounding to nearest even
template <>
inline __host__ __device__ f8_ocp_t f8_convert_rne<f8_ocp_t, _Float16>(_Float16 x)
{
    return f8_ocp_t{
        fp8_impl::cvt_half_t_to_fp8<f8_ocp_t::default_interpret, f8_ocp_t::default_saturation>(x)};
}

template <>
inline __host__ __device__ bf8_ocp_t f8_convert_rne<bf8_ocp_t, _Float16>(_Float16 x)
{
    return bf8_ocp_t{
        fp8_impl::cvt_half_t_to_fp8<bf8_ocp_t::default_interpret, bf8_ocp_t::default_saturation>(
            x)};
}

// Declare a template function for fp8 conversion using RNE
template <typename Y, typename X>
__host__ __device__ constexpr Y f8_convert_sr(X x);

// convert fp32 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_ocp_t f8_convert_sr<f8_ocp_t, float>(float x)
{
    return f8_ocp_t{
        fp8_impl::cvt_float_to_fp8<f8_ocp_t::default_interpret, f8_ocp_t::default_saturation, true>(
            x)};
}

// convert fp32 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_sr<bf8_ocp_t, float>(float x)
{
    return bf8_ocp_t{fp8_impl::cvt_float_to_fp8<bf8_ocp_t::default_interpret,
                                                bf8_ocp_t::default_saturation,
                                                true>(x)};
}

// convert _Float16 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_ocp_t f8_convert_sr<f8_ocp_t, _Float16>(_Float16 x)
{
    return f8_ocp_t{fp8_impl::cvt_half_t_to_fp8<f8_ocp_t::default_interpret,
                                                f8_ocp_t::default_saturation,
                                                true>(x)};
}

// convert _Float16 to bf8 with stochastic rounding
template <>
inline __host__ __device__ bf8_ocp_t f8_convert_sr<bf8_ocp_t, _Float16>(_Float16 x)
{
    return bf8_ocp_t{fp8_impl::cvt_half_t_to_fp8<bf8_ocp_t::default_interpret,
                                                 bf8_ocp_t::default_saturation,
                                                 true>(x)};
}

#if CK_USE_OCP_FP8
using f8_t  = f8_ocp_t;
using bf8_t = bf8_ocp_t;
#define CK_FP8_TYPE_FNUZ 0
#define CK_FP8_TYPE_OCP 1
#else
using f8_t = f8_fnuz_t;
using bf8_t = bf8_fnuz_t;
#define CK_FP8_TYPE_FNUZ 1
#define CK_FP8_TYPE_OCP 0
#endif

} // namespace ck