profile_grouped_conv_fwd.cpp 9.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "profiler/include/profile_grouped_conv_fwd_impl.hpp"

namespace {

enum struct ConvLayout
{
    GNHWC_GKYXC_GNHWK, // 0
Chao Liu's avatar
Chao Liu committed
16
    NHWGC_GKYXC_NHWGK, // 1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
};

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

static void print_helper_msg()
{
    std::cout
        // clang-format off
        << "arg1: tensor operation (grouped_conv_fwd: Grouped Convolution Forward)\n"
        << "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
        << "                 1: Input fp16, Weight fp16, Output fp16\n"
        << "                 2: Input bf16, Weight bf16, Output bf16\n"
        << "                 3: Input int8, Weight int8, Output int8)\n"
        << "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
Chao Liu's avatar
Chao Liu committed
37
        << "                     1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        << "arg4: verification (0: no, 1: yes)\n"
        << "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
        << "arg6: print tensor value (0: no; 1: yes)\n"
        << "arg7: time kernel (0: no, 1: yes)\n"
        << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
    // clang-format on
}

} // namespace

int profile_grouped_conv_fwd(int argc, char* argv[])
{
    // 8 for control, 1 for num_dim_spatial
    if(argc < 9)
    {
        print_helper_msg();
        return 1;
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<ConvLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);
    const int num_dim_spatial  = std::stoi(argv[8]);

    // 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
    if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
    {
        print_helper_msg();
        return 1;
    }

    const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);

    using F32  = float;
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;
    using INT8 = int8_t;

    //
    using GNWC   = ck::tensor_layout::convolution::GNWC;
    using GNHWC  = ck::tensor_layout::convolution::GNHWC;
    using GNDHWC = ck::tensor_layout::convolution::GNDHWC;

    using GKXC   = ck::tensor_layout::convolution::GKXC;
    using GKYXC  = ck::tensor_layout::convolution::GKYXC;
    using GKZYXC = ck::tensor_layout::convolution::GKZYXC;

    using GNWK   = ck::tensor_layout::convolution::GNWK;
    using GNHWK  = ck::tensor_layout::convolution::GNHWK;
    using GNDHWK = ck::tensor_layout::convolution::GNDHWK;

    //
    using NWGC   = ck::tensor_layout::convolution::NWGC;
    using NHWGC  = ck::tensor_layout::convolution::NHWGC;
    using NDHWGC = ck::tensor_layout::convolution::NDHWGC;

    using NWGK   = ck::tensor_layout::convolution::NWGK;
    using NHWGK  = ck::tensor_layout::convolution::NHWGK;
    using NDHWGK = ck::tensor_layout::convolution::NDHWGK;

    constexpr auto I1 = ck::Number<1>{};
    constexpr auto I2 = ck::Number<2>{};
    constexpr auto I3 = ck::Number<3>{};

    auto profile = [&](auto num_dim_spatial_tmp,
                       auto in_layout,
                       auto wei_layout,
                       auto out_layout,
                       auto in_type,
                       auto wei_type,
                       auto out_type) {
        constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;

        using InLayout  = decltype(in_layout);
        using WeiLayout = decltype(wei_layout);
        using OutLayout = decltype(out_layout);

        using InDataType  = decltype(in_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
                                                                InLayout,
                                                                WeiLayout,
                                                                OutLayout,
                                                                InDataType,
                                                                WeiDataType,
                                                                OutDataType>(
            do_verification, init_method, do_log, time_kernel, params);

        return pass ? 0 : 1;
    };

    // GNHWC_GKYXC_GNHWK
    if(num_dim_spatial == 1 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{});
        }
    }
    else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{});
        }
    }
    else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{});
        }
    }
Chao Liu's avatar
Chao Liu committed
192
193
    // NHWGC_GKYXC_NHWGK
    else if(num_dim_spatial == 1 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
194
195
196
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
197
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{});
198
199
200
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
201
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{});
202
203
204
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
205
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{});
206
207
208
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
209
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{});
210
211
        }
    }
Chao Liu's avatar
Chao Liu committed
212
    else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
213
214
215
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
216
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
217
218
219
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
220
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
221
222
223
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
224
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{});
225
226
227
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
228
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{});
229
230
        }
    }
Chao Liu's avatar
Chao Liu committed
231
    else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
232
233
234
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
235
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
236
237
238
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
239
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
240
241
242
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
243
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{});
244
245
246
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
247
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{});
248
249
250
251
252
253
254
        }
    }

    std::cout << "this data_type & layout is not implemented" << std::endl;

    return 1;
}