Supported_Primitives_Guide.rst 2.82 KB
Newer Older
randyh62's avatar
randyh62 committed
1
2
3
4
5
6
7
.. meta::
  :description: Composable Kernel documentation and API reference library
  :keywords: composable kernel, CK, ROCm, API, documentation

.. _supported-primitives:

********************************************************************
pmaybank's avatar
pmaybank committed
8
Supported Primitives Guide
randyh62's avatar
randyh62 committed
9
********************************************************************
pmaybank's avatar
pmaybank committed
10

randyh62's avatar
randyh62 committed
11
This document contains details of supported primitives in Composable Kernel (CK). In contrast to the API Reference Guide, the Supported Primitives Guide is an introduction to the math which underpins the algorithms implemented in CK.
pmaybank's avatar
pmaybank committed
12
13
14
15
16

------------
Softmax
------------

randyh62's avatar
randyh62 committed
17
For vectors :math:`x^{(1)}, x^{(2)}, \ldots, x^{(T)}` of size :math:`B` you can decompose the
18
softmax of concatenated :math:`x = [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ]` as,
pmaybank's avatar
pmaybank committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32

.. math::
   :nowrap:

   \begin{align}
      m(x) & = m( [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ] ) = \max( m(x^{(1)}),\ldots, m(x^{(T)}) )  \\
      f(x) & = [\exp( m(x^{(1)}) - m(x) ) f( x^{(1)} )\ | \ \ldots \ | \ \exp( m(x^{(T)}) - m(x) ) f( x^{(T)} )] \\
      z(x) & = \exp( m(x^{(1)}) - m(x) )\ z(x^{(1)}) + \ldots + \exp( m(x^{(T)}) - m(x) )\ z(x^{(1)}) \\
      \operatorname{softmax}(x) &= f(x)\ / \ z(x)
   \end{align}

where :math:`f(x^{(j)}) = \exp( x^{(j)} - m(x^{(j)}) )` is of size :math:`B` and
:math:`z(x^{(j)}) = f(x_1^{(j)})+ \ldots+ f(x_B^{(j)})` is a scalar.

33
For a matrix :math:`X` composed of :math:`T_r \times T_c` tiles, :math:`X_{ij}`, of size
randyh62's avatar
randyh62 committed
34
:math:`B_r \times B_c` you can compute the row-wise softmax as follows.
pmaybank's avatar
pmaybank committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

For :math:`j` from :math:`1` to :math:`T_c`, and :math:`i` from :math:`1` to :math:`T_r` calculate,

.. math::
   :nowrap:

   \begin{align}
      \tilde{m}_{ij}   &= \operatorname{rowmax}( X_{ij} ) \\
      \tilde{P}_{ij}   &= \exp(X_{ij} - \tilde{m}_{ij} ) \\
      \tilde{z}_{ij}   &= \operatorname{rowsum}( P_{ij} ) \\
   \end{align}

If :math:`j=1`, initialize running max, running sum, and the first column block of the output,

.. math::
   :nowrap:

   \begin{align}
      m_i            &= \tilde{m}_{i1} \\
      z_i            &= \tilde{z}_{i1} \\
      \tilde{Y}_{i1} &= \diag(\tilde{z}_{ij})^{-1} \tilde{P}_{i1}
   \end{align}

Else if :math:`j>1`,

1. Update running max, running sum and column blocks :math:`k=1` to :math:`k=j-1`

.. math::
   :nowrap:

   \begin{align}
      m^{new}_i &= \max(m_i, \tilde{m}_{ij} ) \\
      z^{new}_i &= \exp(m_i - m^{new}_i)\ z_i + \exp( \tilde{m}_{ij} - m^{new}_i )\ \tilde{z}_{ij}  \\
      Y_{ik}    &= \diag(z^{new}_{i})^{-1} \diag(z_{i}) \exp(m_i - m^{new}_i)\ Y_{ik}
   \end{align}

2. Initialize column block :math:`j` of output and reset running max and running sum variables:

.. math::
   :nowrap:

   \begin{align}
      \tilde{Y}_{ij} &= \diag(z^{new}_{i})^{-1} \exp(\tilde{m}_{ij} - m^{new}_i ) \tilde{P}_{ij} \\
      z_i            &= z^{new}_i \\
      m_i            &= m^{new}_i \\
Sam Wu's avatar
Sam Wu committed
80
   \end{align}