test_tensor.cpp 7.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.

#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <gtest/gtest.h>

#include "ck/library/utility/device_memory.hpp"

#include "ck/host_utility/kernel_launch.hpp"

#include "ck/utility/common_header.hpp"

#include "ck/wrapper/layout.hpp"
#include "ck/wrapper/tensor.hpp"

// Compare data in tensor with offset from layout.
// Data and offset should match if physical memory has been initialized with
// sequentially increasing values from 0.
template <typename TensorType>
__host__ __device__ bool TestTensorCheck3d(TensorType& tensor)
{
    const auto& layout = ck::wrapper::layout(tensor);
    for(ck::index_t d = 0; d < ck::wrapper::size<0>(ck::wrapper::get<0>(layout)); d++)
    {
        for(ck::index_t h = 0; h < ck::wrapper::size<1>(ck::wrapper::get<0>(layout)); h++)
        {
            for(ck::index_t w = 0; w < ck::wrapper::size<1>(layout); w++)
            {
                const auto idx = ck::make_tuple(ck::make_tuple(d, h), w);
                if(tensor(idx) != layout(idx))
                {
                    return false;
                }
            }
        }
    }
    return true;
}

template <typename TensorType>
__host__ __device__ bool TestTensorCheck1d(TensorType& tensor, ck::index_t start_offset = 0)
{
    const auto& layout = ck::wrapper::layout(tensor);
    for(ck::index_t w = 0; w < ck::wrapper::size<0>(layout); w++)
    {
        if(tensor(w) - start_offset != layout(ck::make_tuple(w)))
        {
            return false;
        }
    }
    return true;
}

template <ck::index_t nelems, typename TensorType>
__host__ __device__ bool StaticTestTensorCheck1d(TensorType& tensor)
{
    const auto& layout = ck::wrapper::layout(tensor);
    bool success       = true;
    ck::static_for<0, nelems, 1>{}([&](auto w) {
        if(tensor(ck::Number<w.value>{}) != layout(ck::make_tuple(w.value)))
        {
            success = false;
        }
    });
    return success;
}

template <typename TensorType>
__host__ __device__ void InitTensor(TensorType& tensor)
{
    for(ck::index_t i = 0; i < ck::wrapper::size(ck::wrapper::layout(tensor)); i++)
    {
        tensor(i) = i;
    }
}

template <ck::index_t nelems, typename TensorType>
__host__ __device__ void StaticInitTensor(TensorType& tensor)
{

    ck::static_for<0, nelems, 1>{}([&](auto i) { tensor(ck::Number<i.value>{}) = i.value; });
}

// Tests
TEST(TestTensor, ReadWriteHostMemory)
{
    constexpr ck::index_t nelems = 8;

    std::array<ck::index_t, nelems> data;
    const auto layout = ck::wrapper::make_layout(ck::make_tuple(ck::make_tuple(2, 2), 2));
    auto tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Generic>(&data[0], layout);
    InitTensor(tensor);

    EXPECT_TRUE(TestTensorCheck1d(tensor));
    EXPECT_TRUE(TestTensorCheck3d(tensor));
}

__global__ void TestTensorReadWriteDevice(void* data, void* success)
{
    constexpr ck::index_t nelems            = 8;
    constexpr ck::index_t scalar_per_vector = 1;
    __shared__ ck::index_t p_shared[nelems];

    ck::index_t* casted_data_ptr = static_cast<ck::index_t*>(data);
    bool* casted_success_ptr     = static_cast<bool*>(success);

    const auto layout = ck::wrapper::make_layout(ck::make_tuple(ck::make_tuple(2, 2), 2));
    constexpr auto register_layout = ck::wrapper::make_layout(ck::make_tuple(ck::Number<8>{}));

    auto tensor_global =
        ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(casted_data_ptr, layout);
    auto tensor_lds  = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Lds>(p_shared, layout);
    auto tensor_vgpr = ck::wrapper::make_register_tensor<ck::wrapper::MemoryTypeEnum::Vgpr,
                                                         nelems,
                                                         scalar_per_vector,
                                                         ck::index_t>(register_layout);
    auto tensor_sgpr = ck::wrapper::make_register_tensor<ck::wrapper::MemoryTypeEnum::Sgpr,
                                                         nelems,
                                                         scalar_per_vector,
                                                         ck::index_t>(register_layout);

    InitTensor(tensor_global);
    InitTensor(tensor_lds);
    StaticInitTensor<nelems>(tensor_vgpr);
    StaticInitTensor<nelems>(tensor_sgpr);

    *casted_success_ptr &= TestTensorCheck1d(tensor_global);
    *casted_success_ptr &= TestTensorCheck3d(tensor_global);

    *casted_success_ptr &= TestTensorCheck1d(tensor_lds);
    *casted_success_ptr &= TestTensorCheck3d(tensor_lds);

    *casted_success_ptr &= StaticTestTensorCheck1d<nelems>(tensor_vgpr);

    *casted_success_ptr &= StaticTestTensorCheck1d<nelems>(tensor_sgpr);
}

TEST(TestTensor, ReadWriteGlobalLdsRegistersMemory)
{
    constexpr ck::index_t nelems = 8;
    std::array<ck::index_t, nelems> host_data;

    DeviceMem data_buf(nelems * sizeof(ck::index_t));
    data_buf.ToDevice(&host_data[0]);
    DeviceMem success_buf(sizeof(bool));

    launch_and_time_kernel(StreamConfig{},
                           TestTensorReadWriteDevice,
                           dim3(1),
                           dim3(1),
                           nelems * sizeof(ck::index_t),
                           data_buf.GetDeviceBuffer(),
                           success_buf.GetDeviceBuffer());

    bool success;
    success_buf.FromDevice(&success);
    EXPECT_TRUE(success);
}

TEST(TestTensor, Slicing)
{
    constexpr ck::index_t nelems = 8;

    std::array<ck::index_t, nelems> data;
    const auto shape   = ck::make_tuple(ck::make_tuple(2, 2), 2);
    const auto strides = ck::make_tuple(ck::make_tuple(1, 2), 4);
    const auto layout  = ck::wrapper::make_layout(shape, strides);
    auto tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Generic>(&data[0], layout);
    InitTensor(tensor);

    auto tensor2x2x2 =
        tensor(ck::make_tuple(ck::wrapper::slice(2), ck::wrapper::slice(2)), ck::wrapper::slice(2));
    EXPECT_EQ(ck::wrapper::rank(tensor2x2x2), 2);
    EXPECT_EQ(ck::wrapper::depth(tensor2x2x2), 2);
    EXPECT_EQ(ck::wrapper::size(tensor2x2x2), 8);
    EXPECT_TRUE(TestTensorCheck1d(tensor2x2x2));

    auto tensor2x2 = tensor(ck::make_tuple(1, ck::wrapper::slice(2)), ck::wrapper::slice(2));
    EXPECT_EQ(ck::wrapper::rank(tensor2x2), 2);
    EXPECT_EQ(ck::wrapper::depth(tensor2x2), 2);
    EXPECT_EQ(ck::wrapper::size(tensor2x2), 4);
    EXPECT_TRUE(TestTensorCheck1d(tensor2x2, layout(ck::make_tuple(ck::make_tuple(1, 0), 0))));

    auto tensor1x1 = tensor(ck::make_tuple(1, ck::wrapper::slice(1, 2)), ck::wrapper::slice(1, 2));
    EXPECT_EQ(rank(tensor1x1), 2);
    EXPECT_EQ(depth(tensor1x1), 2);
    EXPECT_EQ(size(tensor1x1), 1);
    EXPECT_TRUE(TestTensorCheck1d(tensor1x1, layout(ck::make_tuple(ck::make_tuple(1, 1), 1))));

    auto tensor2 = tensor(ck::make_tuple(1, 1), ck::wrapper::slice(0, 2));
    EXPECT_EQ(ck::wrapper::rank(tensor2), 1);
    EXPECT_EQ(ck::wrapper::depth(tensor2), 1);
    EXPECT_EQ(ck::wrapper::size(tensor2), 2);
    EXPECT_TRUE(TestTensorCheck1d(tensor2, layout(ck::make_tuple(ck::make_tuple(1, 1), 0))));

    // negative indexing
    auto tensor1x2 = tensor(ck::make_tuple(1, ck::wrapper::slice(0, -2)), ck::wrapper::slice());
    EXPECT_EQ(rank(tensor1x2), 2);
    EXPECT_EQ(depth(tensor1x2), 2);
    EXPECT_EQ(size(tensor1x2), 2);
    EXPECT_TRUE(TestTensorCheck1d(tensor1x2, layout(ck::make_tuple(ck::make_tuple(1, 0), 0))));
}