tensor.hpp 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include "utils/tensor_utils.hpp"
#include "utils/layout_utils.hpp"

namespace ck {
namespace wrapper {

/**
 * \brief Tensor wrapper that performs static and dynamic buffer logic.
 *
 * \tparam BufferAddressSpace Memory type (Generic, Global, LDS, VGPR, SGPR).
 * \tparam ElementType Element data type.
 * \tparam Shape Tensor shape (layout component).
 * \tparam Strides Tensor strides (layout component).
 * \tparam NumVectors Number of vectors (only for VGPR, SGPR).
 * \tparam ScalarPerVector Scalars per vector (only for VGPR, SGPR).
 */
template <MemoryTypeEnum BufferAddressSpace,
          typename ElementType,
          typename Shape,
          typename Strides,
          index_t NumVectors,     // param for Register memory
          index_t ScalarPerVector // param for Register memory
          >
struct Tensor
{
    private:
    // Check if Tuple contains Slice object
    template <typename T>
    constexpr static bool IsSlicing(T&&)
    {
        return is_detected<is_slice, T>::value;
    }
    template <typename... Ts>
    constexpr static bool IsSlicing(Tuple<Ts...>&&)
    {
        return (IsSlicing(Ts{}) || ...);
    }

    // Calculate first index of new tensor after slice
    // It is needed to calculate offset for new tensor
    template <typename... Ts>
    constexpr auto GetStartIdxForSlicedTensor(const Tuple<Ts...>& idx) const
    {
        const auto start_idx_for_sliced_tensor = generate_tuple(
            [&](auto i) {
                constexpr auto num_i = Number<i>{};
                if constexpr(is_detected<is_tuple, tuple_element_t<i.value, Tuple<Ts...>>>::value)
                {
                    // if tuple then recurrence
                    return GetStartIdxForSlicedTensor(idx.At(num_i));
                }
                else if constexpr(is_detected<is_slice,
                                              tuple_element_t<i.value, Tuple<Ts...>>>::value)
                {
                    // if slice, return the beginning of the interval
                    return idx.At(num_i).from_;
                }
                else
                {
                    // if one dim selected
                    return idx.At(num_i);
                }
            },
            Number<Tuple<Ts...>::Size()>{});

        return start_idx_for_sliced_tensor;
    }

    // Calculate new tensor shape after slice
    template <typename... Ts, typename ShapeTmpType>
    constexpr auto GetShapeFromSlicedTensor(const Tuple<Ts...>& idx,
                                            const ShapeTmpType& shape) const
    {
        // Pack each value in tuple to remove empty tuples after generation
        auto new_shape = generate_tuple(
            [&](auto i) {
                constexpr auto num_i = Number<i>{};
                if constexpr(is_detected<is_tuple, tuple_element_t<i.value, Tuple<Ts...>>>::value)
                {
                    if constexpr(!IsSlicing(tuple_element_t<i.value, Tuple<Ts...>>{}))
                    {
                        // if tuple does not have any slice then we can remove dimension
                        return Tuple<>{};
                    }
                    else
                    {
                        // if tuple then recurrence
                        return make_tuple(GetShapeFromSlicedTensor(idx.At(num_i), shape.At(num_i)));
                    }
                }
                else if constexpr(is_detected<is_slice,
                                              tuple_element_t<i.value, Tuple<Ts...>>>::value)
                {
                    // calculate new dimension
                    const auto& dim = size(shape.At(num_i));
                    const auto val  = idx.At(num_i).range(dim);
                    return make_tuple(val);
                }
                else
                {
                    // remove dimension for just value
                    return Tuple<>{};
                }
            },
            Number<Tuple<Ts...>::Size()>{});
        // Remove empty tuples (deleted elements) and return
        return UnrollNestedTuple<0, 1>(new_shape);
    }

    template <typename... Ts, typename StridesTmpType>
    constexpr auto GetStridesFromSlicedTensor(const Tuple<Ts...>& idx,
                                              const StridesTmpType& strides) const
    {
        // Pack each value in tuple to remove empty tuples after generation
        auto new_strides = generate_tuple(
            [&](auto i) {
                constexpr auto num_i = Number<i>{};
                if constexpr(is_detected<is_tuple, tuple_element_t<i.value, Tuple<Ts...>>>::value)
                {
                    if constexpr(!IsSlicing(tuple_element_t<i.value, Tuple<Ts...>>{}))
                    {
                        // if tuple does not have any slice then we can remove dimension
                        return Tuple<>{};
                    }
                    else
                    {
                        // if tuple then recurrence
                        return make_tuple(
                            GetStridesFromSlicedTensor(idx.At(num_i), strides.At(num_i)));
                    }
                }
                else if constexpr(is_detected<is_slice,
                                              tuple_element_t<i.value, Tuple<Ts...>>>::value)
                {
                    // Stride will be the same
                    return make_tuple(strides.At(num_i));
                }
                else
                {
                    // remove dimension for just value
                    return Tuple<>{};
                }
            },
            Number<Tuple<Ts...>::Size()>{});
        // Remove empty tuples (deleted elements) and return
        return UnrollNestedTuple<0, 1>(new_strides);
    }

    public:
    using ElementSpaceSize  = decltype(Layout<Shape, Strides>{
        Shape{}, Strides{}}.GetElementSpaceSize()); // SpaceSize type for buffer
    using TensorElementType = ElementType;           // DataType

    static constexpr MemoryTypeEnum TensorBufferAddressSpace = BufferAddressSpace;
    static constexpr bool IsDynamicBuffer = !(BufferAddressSpace == MemoryTypeEnum ::Sgpr ||
                                              BufferAddressSpace == MemoryTypeEnum ::Vgpr);

    __host__ __device__ Tensor() = delete;
    __host__ __device__ Tensor(ElementType* pointer, const Layout<Shape, Strides>& layout)
        : layout_(layout),
          buffer_(make_dynamic_buffer<BufferAddressSpace>(pointer, layout.GetElementSpaceSize()))
    {
    }

    __host__ __device__ Tensor(const Layout<Shape, Strides>& layout) : layout_(layout)
    {
        static_assert(!IsDynamicBuffer, "Wrong BufferAddressSpace for register.");
    }

    __host__ __device__ constexpr const Layout<Shape, Strides>& GetLayout() const
    {
        return layout_;
    }

    // Getter for new sliced tensor
    template <typename... Ts, enable_if_t<IsSlicing(Tuple<Ts...>{}), bool> = false>
    __host__ __device__ auto operator[](const Tuple<Ts...>& idx) const
    {
        static_assert(IsDynamicBuffer, "Register slice is not supported");
        // Calculate offset based on first idx for new tensor
        const index_t offset = layout_(GetStartIdxForSlicedTensor(idx));

        auto new_shape = GetShapeFromSlicedTensor(idx, layout_.GetShape());
        if constexpr(is_same_v<Strides, Tuple<>>)
        {
            auto new_layout = make_layout(new_shape);
            return make_tensor<BufferAddressSpace>(buffer_.p_data_ + offset, new_layout);
        }
        else
        {
            auto new_strides = GetStridesFromSlicedTensor(idx, layout_.GetStrides());
            auto new_layout  = make_layout(new_shape, new_strides);
            return make_tensor<BufferAddressSpace>(buffer_.p_data_ + offset, new_layout);
        }
    }

    template <typename... Ts, enable_if_t<IsSlicing(Tuple<Ts...>{}), bool> = false>
    __host__ __device__ auto operator()(const Tuple<Ts...>& idx) const
    {
        return this->operator[](idx);
    }

    template <typename... Idxs, enable_if_t<IsSlicing(Tuple<Idxs...>{}), bool> = false>
    __host__ __device__ auto operator()(Idxs... idxs) const
    {
        return this->operator[](make_tuple(idxs...));
    }

    // Getter for the const value
    template <typename... Ts, enable_if_t<!IsSlicing(Tuple<Ts...>{}), bool> = false>
    __host__ __device__ const ElementType& operator[](const Tuple<Ts...>& idx) const
    {
        if constexpr(IsDynamicBuffer)
        {
            const index_t offset = layout_(idx);
            return buffer_[offset];
        }
        else
        {
            if constexpr(is_same_v<Strides, Tuple<>>)
            {
                constexpr index_t offset =
                    Layout<Shape, Strides>{Shape{}}.template operator()<Tuple<Ts...>>();
                return buffer_[Number<offset>{}];
            }
            else
            {
                constexpr index_t offset =
                    Layout<Shape, Strides>{Shape{}, Strides{}}.template operator()<Tuple<Ts...>>();
                return buffer_[Number<offset>{}];
            }
        }
    }

    template <typename... Ts, enable_if_t<!IsSlicing(Tuple<Ts...>{}), bool> = false>
    __host__ __device__ const ElementType& operator()(const Tuple<Ts...>& idx) const
    {
        return this->operator[](idx);
    }

    template <typename... Idxs, enable_if_t<!IsSlicing(Tuple<Idxs...>{}), bool> = false>
    __host__ __device__ const ElementType& operator()(Idxs... idxs) const
    {
        return this->operator[](make_tuple(idxs...));
    }

    // Getter for the value reference
    template <typename... Ts, enable_if_t<!IsSlicing(Tuple<Ts...>{}), bool> = false>
    __host__ __device__ ElementType& operator[](const Tuple<Ts...>& idx)
    {
        if constexpr(IsDynamicBuffer)
        {
            const index_t offset = layout_(idx);
            return buffer_(offset);
        }
        else
        {
            if constexpr(is_same_v<Strides, Tuple<>>)
            {
                constexpr index_t offset =
                    Layout<Shape, Strides>{Shape{}}.template operator()<Tuple<Ts...>>();
                return buffer_(Number<offset>{});
            }
            else
            {
                constexpr index_t offset =
                    Layout<Shape, Strides>{Shape{}, Strides{}}.template operator()<Tuple<Ts...>>();
                return buffer_(Number<offset>{});
            }
        }
    }

    template <typename... Ts, enable_if_t<!IsSlicing(Tuple<Ts...>{}), bool> = false>
    __host__ __device__ ElementType& operator()(const Tuple<Ts...>& idx)
    {
        return this->operator[](idx);
    }

    template <typename... Idxs, enable_if_t<!IsSlicing(Tuple<Idxs...>{}), bool> = false>
    __host__ __device__ ElementType& operator()(Idxs... idxs)
    {
        return this->operator[](make_tuple(idxs...));
    }

    __host__ __device__ constexpr auto GetDefaultDescriptor()
    {
        return layout_.GetDefaultDescriptor();
    }

    private:
    using DynamicBufferType = DynamicBuffer<BufferAddressSpace,
                                            ElementType,
                                            ElementSpaceSize,
                                            true /*InvalidElementUseNumericalZeroValue*/>;
    using StaticBufferType =
        StaticBufferTupleOfVector<BufferAddressSpace,
                                  ElementType,
                                  NumVectors,
                                  ScalarPerVector,
                                  true /*InvalidElementUseNumericalZeroValue*/>;
    // If register use static buffer, else use dynamic buffer
    using Buffer = std::conditional_t<IsDynamicBuffer, DynamicBufferType, StaticBufferType>;

    const Layout<Shape, Strides> layout_;
    Buffer buffer_;
};

} // namespace wrapper
} // namespace ck