1. 15 Feb, 2023 2 commits
    • rocking5566's avatar
      Improve normalization (#580) · 6a6163a3
      rocking5566 authored
      * Sync the order of type string with template parameter
      
      * Add more instances
      
      * Check the vector size and remove redundant var
      
      * Extract var to static, prepare to separate sweep once kernel
      
      * Separate sweeponce flow and optimize the flow
      
      * 1. Rename AccDatatype in normalization to computeData
      2. Rename AccElementwiseOperation to YElementwiseOperation in normalization
      
      * Remove useless code
      
      * Update naive variance kernel
      
      * Refine string
      
      * Fix typo
      
      * Support naive variance for device_normalization
      
      * Check the blocksize
      
      * Share the VGPR of x and y
      
      * Share the VGPR of gamma and beta
      
      * Add more instances
      
      * Support fp16 sqrt for experiment
      
      * Add CHANGELOG
      
      * Fix typo
      
      * clang-format
      6a6163a3
    • Adam Osewski's avatar
      Conv3D FWD BWD WRW fp16 fp32 client examples (#559) · e9fd1228
      Adam Osewski authored
      
      
      * Conv3d bwd weight client example.
      
      * Update year in license
      
      * Convolution bwd data 3D fp16/fp32 client example.
      
      * Client example for convnd fwd fp16 fp32
      
      * clang-format
      
      * Review remarks.
      
      * Fix compiler err.
      
      * Update data layout to standard one.
      
      * Add conv 3d fwd NDHWGC instances
      
      * clang-format
      
      * Conv3d fwd NDHWGC instances.
      
      ---------
      Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
      Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
      e9fd1228
  2. 13 Feb, 2023 1 commit
  3. 09 Feb, 2023 2 commits
    • rocking5566's avatar
      Gemm+layernorm instance, ckProfiler, client example (#568) · f7d28f3e
      rocking5566 authored
      * Add gemm + layernorm instance
      
      * Add ckProfiler
      
      * Add test
      
      * Add client example
      
      * Detect if user forger to set the workrspace
      
      * Use literal in the example
      
      * [What] use builtin function for sqrt
      [Why] compiler will not use v_sqrt_f64_e64 if we use ::sqrt()
      
      * check gemm vaildity in IsSupportedArgument
      
      * Add more testcases
      
      * Merge duplicated folder in client example
      
      * Print more infomation
      
      * Use better kernel parameter for MS problem size
      
      * clang format
      
      * Add constexpr for if condition and remove redundant include
      
      * Remove cstdlib and add constexpr
      f7d28f3e
    • guangzlu's avatar
      Add instance for elementwise normlization (#573) · 76d144fa
      guangzlu authored
      * added instances for large N
      
      * add instance for elementwise normlization
      
      * added supported restrict in device_elementwise_normalization_impl.hpp
      76d144fa
  4. 08 Feb, 2023 1 commit
    • ltqin's avatar
      Add GemmAddSoftmaxGemm support for MSFT ORT (instances and client API) (#576) · 332ccc33
      ltqin authored
      * add instance for gemm bias softmax gemm
      
      * add client example
      
      * change CGridDesc_G_M_N to CGridDesc_G_M_O
      
      * add gridwise
      
      * change c grid name
      
      * device add d0s data
      
      * fix 08 client_example
      
      * add example 47_fused_attention
      
      * example output correct
      
      * add d0 to example
      
      * add d0 element op
      
      * rechange instance code
      
      * change Acc0ElementwiseOperation to C0DEElementwiseOperation
      
      * change example name
      
      * update instance for cdeelementwiseop
      
      * add bhalf_t ScaleAdd
      
      * add test
      
      * not surport geem1 bias
      
      * remove some ignore
      
      * fix test bug
      332ccc33
  5. 26 Jan, 2023 1 commit
  6. 25 Jan, 2023 1 commit
    • Qianfeng's avatar
      Batchnorm inference instances, external API, client examples and gtests (#531) · a1b2441f
      Qianfeng authored
      * File renaming and class renaming for device element-wise operation
      
      * Add batchnorm-infer instances, external API and client example
      
      * Add batchnorm-infer profiler module and gtests
      
      * Remove file device_elementwise_extension.hpp and move NormalizeInInfer operation to element_wise_operation.hpp
      
      * Remove the using of class aliasing for DeviceElementwiseForBatchNormInfer
      
      * Rename class and file due to conflict from device_elementwise_2d.hpp
      
      * Fix namespace in batcnnorm_infer_nhwc client example
      a1b2441f
  7. 18 Jan, 2023 4 commits
  8. 17 Jan, 2023 2 commits
    • Qianfeng's avatar
      Reduction external API and client examples (#493) · 80e05267
      Qianfeng authored
      
      
      * Change to the DeviceReduce base class template to include all problem description information
      
      * Add external api for reduction
      
      * Add client example to test the reduction external api
      
      * Spelling correction
      
      * Re-implement the host_reduction to follow the DeviceReduce base API format
      
      * Change the reduce profiler to call the external API for collecting device instances
      
      * Rename reduce client example directory from 08_reduce to 12_reduce
      
      * Remove (void) before the functional call
      
      * Tiny update in reduce client example
      
      * Tiny update in profile_reduce_impl.hpp
      
      * Rename the reduce client example directory
      Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
      80e05267
    • rocking5566's avatar
      Gemm layernorm welford (#413) · 7829d729
      rocking5566 authored
      
      
      * Add device op of gemm layernorm
      
      * [What] Rename F to H
      [Why] F and G prepare for welford tensor
      
      * Add gridwise gemm + welford
      
      * Extract template parameter
      
      * Rename kernel. Prepare to add second half kernel
      
      * Extract var
      
      * Add second kernel for gemm+layernorm
      
      * Move to the gemm_layernorm folder
      
      * Rename F and G to mean and var
      
      * Do not use snakeCurved, it makes determination of padding  for welford difficult
      
      * Rewrite the device interface and rename some var
      
      * Add welford count
      
      * Update interface
      
      * Sync code, prepare to test on MI200
      
      * Clean the code
      
      * Implement layernorm
      
      * Add comment to mension hipFree
      
      * Wrtie out the e for debug.
      This could be remove and use h for instead
      
      * 1. Allocate mean, var and count into by SetWorkSpacePointer.
      2. Add GetWorkSpaceSize to calculate the space size
      
      * Add gemm layernorm host code
      
      * use reference layernorm
      
      * Fix bug of blockwise welford for first kernel
      
      * Fix bug of mean var padding for layernorm
      
      * Use sgpr for shuffleM_index
      
      * padding for GemmMeanVarCountGridDescriptor_M_NBlock
      
      * Add layout parameter
      
      * Check argument for gemm
      
      * calculate max count for tail block
      
      * Share E and H memory in device op
      
      * Hard code the vector dim
      
      * Refine the MakeDescriptor
      
      * 1. Remove E parameter, because E is inside of device op
      2. Check vector size
      
      * [What] Rename MakeMeanVarDescriptor_M_N
      [Why] Prepare to add count version of make descriptor
      
      * Use 1D global memory for count
      
      * Prevent redundant IO
      
      * Update parameter
      
      * Add pipeline v1/v2 selector
      
      * Rename the example name
      
      * Add base class for gemm layernorm
      
      * Refine naming to distinguish naive and welford
      
      * Add comment to explan in detail
      
      * We don't need to pad in N dimension in gemm for mean/var/count. Set NPerTile 1
      
      * Rewrite the 2st kernel, use multiple block along N dimension in layernorm kernel
      
      * Share the vector size
      
      * Refine var name
      
      * [What] Force LayernormThreadSliceSize_N = vector size.
      [Why] Memory coalesce
      
      * Add comment
      
      * Extract divisor out of the loop in reference layernorm
      
      * Pad different size for E and H in layernorm kernel according to different block tile
      
      * Refine naming
      
      * Refine naming
      
      * Prevent implicit cast
      
      * [What] use ck::math::sqrt instead of __builtin_amdgcn_sqrtf
      [Why] __builtin_amdgcn_sqrtf is only support float, double will cause casting
      
      * Cast only constant
      
      * Change of post shuffle thread descriptor
      
      * Add EMeanVarDataType parameter.
      
      * Merge the mean and var threadwise copy
      
      * Add missing index
      
      * Fix Typo
      
      * Sync the variable with previous if
      
      * 1. Declare e inside the host_gemm_layernorm()
      2. Prevent implicit cast in reference code
      Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
      7829d729
  9. 15 Dec, 2022 2 commits
  10. 07 Dec, 2022 1 commit
  11. 02 Dec, 2022 1 commit
    • ltqin's avatar
      Add multiple d gridwise gemm on Navi21 for ResNet50 (#517) · 23ecf0fa
      ltqin authored
      
      
      * start add example
      
      * add multiple d fp16 example
      
      * device transfer elementwiseop to gridwise
      
      * gridwise add multiple d
      
      * change example for multiple d
      
      * fix spill registers
      
      * fix for passthrough element op
      
      * fix int8 overflow
      
      * change example file name
      
      * add instance for dl multiple d
      
      * example add DsDataType
      
      * remove grouped_convolution_forward_dl.hpp
      
      * add head file(was deleted before)
      
      * fix not support device issue
      
      * format
      
      * remove passthrough check
      Co-authored-by: default avatarletaoqin <letaoqin@amd.com>
      23ecf0fa
  12. 30 Nov, 2022 2 commits
    • rocking5566's avatar
      gemm, conv perchannel quantization (#503) · ad541ad6
      rocking5566 authored
      * Use gemm_multiple_D instead
      
      * Add gemm bias relu quantization example
      
      * Add pure gemm quantization example
      
      * Add quantization of perchannel conv + bias + relu example
      
      * Refine the code
      
      * Rename multiplier to requant_scale
      
      * Rename the folder
      
      * Remove redundant comment
      
      * Rename the file. Prepare to add perchannel
      
      * Add conv perchannel instance
      
      * Move to quantization folder
      
      * Add conv perchannel client example
      
      * Apply Rangify constructor of HostTensorDescriptor & Tensor<>
      
      * Fix merge error
      ad541ad6
    • Qianfeng's avatar
      BatchNorm backward instance/external API/profiler/tests (#519) · 63af525c
      Qianfeng authored
      * Refine the device batchnorm-backward base API templates and data type assignments
      
      * Remove duplicated kernel file
      
      * Add batchnorm backward instances and external API
      
      * Add batchnorm-backward profiler and tests
      
      * Add client example which uses batchnorm backward external API
      
      * Merge test/batchnorm_fwd and test/batchnorm_bwd into one directory
      
      * Loose the threshold for batchnorm-backward check_err()
      63af525c
  13. 29 Nov, 2022 1 commit
    • Qianfeng's avatar
      BatchNorm backward implementation (#461) · 44789d99
      Qianfeng authored
      * Implemented batchnorm-backward Blockwise and Multiblock kernels
      
      * Add batchnorm-backward device op
      
      * Add batchnorm-backward host-reference op
      
      * Add batchnorm-backward example
      
      * Parameters renaming in batchnorm backward kernels and device op
      
      * Change in the example to loose the threshold for ScaleDiff checking
      
      * Add comments to explain the implementation of batchnorm-backward
      
      * Parameters renaming again in batchnorm backward kernels
      
      * Improve the expression calculation for performance
      
      * Add batchnorm backward to README
      
      * Add comments to explain inv-variance in batchnorm forward and backward
      
      * Renaming the batchnorm forward training and inferring examples
      
      * Add/update the comments for batchnorm-backward kernels
      
      * Renaming again
      
      * Add block_sync_lds between two consecutive blockwise reductions
      
      * Move common expression 1/N out of the static_for loops
      
      * Add dy_elementwise_op
      
      * Renaming in backward example again
      
      * Add checking for reduceDims in reference_batchnorm_backward
      
      * Update to comments and codes format
      
      * Rename in the comments
      
      * Remove common expression out of the loop in reference_batchnorm_backward_nhwc_c
      
      * Add block_sync_lds() between blockwise reduction again
      
      * Fix comments again
      
      * Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test
      44789d99
  14. 28 Nov, 2022 1 commit
  15. 25 Nov, 2022 1 commit
    • Qianfeng's avatar
      BatchNorm forward instance/external api/profiler/tests/client example (#511) · 4e6a5575
      Qianfeng authored
      
      
      * Update to device_batchnorm_forward base class to include all template parameters for problem description
      
      * Add batchnorm forward instances and external api
      
      * Add batchnorm forward profiler module which uses the external api
      
      * Add some comments in batchnorm_forward example to explain the dimensions in lengths[]
      
      * Replace the reference_batchnorm_forward_nhwc_c by generic reference_batchnorm_forward
      
      * Improvement to the batchnorm infer base API
      
      * Add batchnorm forward client example which shows using the batchnorm forward external API
      
      * Add test for batchnorm forward
      
      * Tuning the batchnorm profiler initialized values and error threshold
      
      * Add support for bhalf_t in instances/external api/tests
      
      * Add support for int8_t in instances/external api/tests
      
      * Add support for double in instances/external api/tests
      
      * Let ScaleDataType and BiasDataType be same as XDataType and YDataType when creating instances
      
      * Checking before running best instance in batchnorm_fwd_nhwc client example
      
      * Add checking for YElementwiseOp in batchnorm_forward external API
      
      * Add more types in batchnorm forward profiler
      
      * Add more test lengths
      Co-authored-by: default avatarrocking5566 <ChunYu.Lai@amd.com>
      4e6a5575
  16. 20 Nov, 2022 1 commit
  17. 15 Nov, 2022 3 commits
    • guangzlu's avatar
      Add BF16 tests for batched_gemm_softmax_gemm_permute (#504) · 4c4c7328
      guangzlu authored
      
      
      * fixed bug in softmax reference & add bf16 examples for batched_gemm_scale_softmax_gemm
      
      * added bf16 tests for batched_gemm_softmax_gemm_permute
      
      * changed format of device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp
      
      * changed format device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp
      
      * aligned annotations
      
      * modified CMakeLists for examples
      
      * add common example code of fp16/bf16 version for batched_gemm_scale_softmax_gemm_xdl
      
      * use macro to control the instances
      
      * added macro control into instances
      
      * clang-format some files
      
      * changed error tolerance for bf16
      
      * changed index for 10_elementwise_normalization
      
      * fixed xdlops code bug in amd_xdlops.hpp
      Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
      4c4c7328
    • ltqin's avatar
      Add Conv Backward Data on Navi21 for ResNet50 (#499) · db0eb1ea
      ltqin authored
      
      
      * start add example
      
      * add device dl
      
      * change launch kernel
      
      * change init data method
      
      * change example config
      
      * add config valid check
      
      * add instance for dl bwd
      
      * add instance to ckProfiler
      
      * reserver to profiler and cmakelist
      
      * add instance to ckProfiler2
      
      * change instance f32 config
      
      * fix example return value
      Co-authored-by: default avatarletaoqin <letaoqin@amd.com>
      Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
      db0eb1ea
    • Po Yen Chen's avatar
      Introduce ck::accumulate_n() (#439) · 730204ee
      Po Yen Chen authored
      We can use this template to eliminate duplicated iterator computing
      logics. By providing return type to ck::accumulate_n(), we can avoid
      type conversion operations.
      730204ee
  18. 11 Nov, 2022 2 commits
    • Po Yen Chen's avatar
      Fix build errors on CI server (#506) · 4382b414
      Po Yen Chen authored
      * Add missing ignore expression
      
      * Add missing include directive
      4382b414
    • Po Yen Chen's avatar
      Rangify constructor of HostTensorDescriptor & Tensor<> (#445) · 4a2a56c2
      Po Yen Chen authored
      * Rangify STL algorithms
      
      This commit adapts rangified std::copy(), std::fill() & std::transform()
      
      * Rangify check_err()
      
      By rangifying check_err(), we can not only compare values between
      std::vector<>s, but also compare any ranges which have same value
      type.
      
      * Allow constructing Tensor<> like a HostTensorDescriptor
      
      * Simplify Tensor<> object construction logics
      
      * Remove more unnecessary 'HostTensorDescriptor' objects
      
      * Re-format example code
      
      * Re-write more HostTensorDescriptor ctor call
      4a2a56c2
  19. 10 Nov, 2022 5 commits
    • Po Yen Chen's avatar
      Rangify FillUniformDistributionIntegerValue<> (#443) · 6f0564f0
      Po Yen Chen authored
      Allow passing forward range to its call operator
      6f0564f0
    • guangzlu's avatar
      add client example for elementwise_normalization (#501) · 70456328
      guangzlu authored
      * add client example for elementwise_normalization
      
      * clang format elementwise_layernorm2d.cpp
      
      * changed some naming to make it more understandable
      
      * changed naming of input into ab_input
      
      * fixed bug for threadwise_x_store
      
      * add elementwise operation to reference
      70456328
    • Po Yen Chen's avatar
      Add client example of grouped conv2d forward (data type: fp16) (#488) · f4980310
      Po Yen Chen authored
      * Rename example folder for GroupedConvFwdMultipleD
      
      * Unify example codes
      
      * Change target names
      
      * Add fp16 example for multiple d instance
      
      * Re-format common.hpp
      
      * Add interface 'DeviceGroupedConvFwd'
      
      * Use simpler interface
      
      * Move common conv params out
      
      * Rename conv fwd client example folder
      
      * Add missing include directive
      
      * Update grouped conv instance implementations
      
      * Simplify ckProfiler (grouped conv forward)
      
      * Use GroupedConvFwd to implement client example
      
      * Use greater groupe count in example
      
      * Add custom target to group examples
      
      * Add extra tag param to instance factory function
      
      * Use tag to differentiate factory functions
      
      * Add missing tag argument for factory function
      
      * Remove inheritance relationship
      
      * Remove no-longer used include directive
      
      * Add license in front of file
      f4980310
    • Po Yen Chen's avatar
      Add client example of grouped conv2d backward weight (data type: fp16) (#498) · 38470e04
      Po Yen Chen authored
      * Remove redundant CMake setting
      
      * Extract common code from files
      
      * Rename folder 'convnd' to 'conv'
      
      * Use std::array<> to accept compile-time kwnown # of arguments
      
      * Fix compilation error of tuning parameter
      
      * In example, use same setting as unit-test
      
      * Remove no-longer used include directive
      
      * Add interface for grouped conv bwd weight
      
      * Add group support for conv bwd weight
      
      * Add grouped conv bwd weight example
      
      * Use group parameter in example
      
      * Rename example folder
      
      * Remove non-grouped version example source files
      
      * Rename device op template
      
      * Add group support to convolution backward weight
      
      * Remove debug messages
      
      * Use smaller group size in example
      
      * Use named variable as loop terminate condition
      
      * Prettify example output message
      
      * Enlarge used grid size
      
      * Allow real grid size exceeds expected grid size
      
      * Rename interface file
      
      * Add client example for grouped conv2d bwd weight
      
      * Fix wrong include directive
      
      * Rename client example folder
      38470e04
    • Po Yen Chen's avatar
      Remove interface 'DeviceGroupedConvBwdData' (#500) · 67423a22
      Po Yen Chen authored
      * Remove interface 'DeviceGroupedConvBwdData'
      
      * Remove no-longer needed include directive
      
      * Rename client example folder
      67423a22
  20. 03 Nov, 2022 1 commit
    • guangzlu's avatar
      Fused elementwise normalization (#492) · 8a4253ba
      guangzlu authored
      * add fused addition lyernorm
      
      * add fused addition lyernorm
      
      * changed CMakelist
      
      * removed annotates
      
      * modified descriptor of C
      
      * fixed bug in gridwise add layernorm
      
      * format the files
      
      * modified name from add&layernorm into elementwise&layernorm
      
      * created fused elementwise layernorm branch
      
      * change input into tuple type
      
      * add sweep once to reduce load & read of C from global memory
      
      * modified Argument api
      
      * modified way to malloc c in global memory
      
      * changed gamma and beta to m_k_desc
      
      * fixed bug when sweep once and move CDataType when define device level struct
      
      * add src dim for gamma and beta
      
      * implement optimization for coalesced
      
      * delete a annotation line
      
      * fixed some bug to meet the requirements of ck
      
      * add bandwidth computing in example, and fixed the time unit
      
      * move device_elementwise_layernorm_impl.hpp into device/impl
      
      * fixed bug in device_elementwise_layernorm_impl.hpp
      
      * changed name from layernorm into normalization
      
      * clang-format the changed files
      
      * changed the names
      
      * moved immidiate results into lds, it become faster in non-sweeponce cases
      
      * changed naming of C into X to make the defination more clear
      
      * changed naming in example
      
      * add tests for elementwise normalization
      
      * move example_elementwise_layernorm_blockwise into folder 44_elementwise_normalization
      
      * move test_elementwise_layernorm_fp16 into new folder
      
      * move elementwise_normalization_instances into a new folder
      
      * add more tests in test_elementwise_layernorm_fp16.cpp
      
      * added some corner cases in test
      
      * fixed method to compute lds size for matrix X
      
      * changed name of 44_elementwise_normalization into 45_elementwise_normalization
      
      * modified some comments
      
      * modified some other confused comments
      
      * reduce redundant tests in test_elementwise_layernorm_fp16.cpp
      8a4253ba
  21. 02 Nov, 2022 5 commits
    • Anthony Chang's avatar
    • Po Yen Chen's avatar
      Add client example of grouped conv2d backward data (data type: fp16) (#481) · 9e57a290
      Po Yen Chen authored
      * Improve example reusability
      
      * Remove no-longer used file
      
      * Rename folder of grouped_conv_bwd_data example
      
      * Add normal grouped conv bwd example
      
      * Add interface 'DeviceGroupedConvBwdData'
      
      * Prettify comment of device op type arguments
      
      * Add grouped conv2d/conv3d backward data fp16 instances
      
      * Fix wrong template argument
      
      * Add grouped_conv2d_bwd_data client example
      
      * Use simpler expression to calculate memory size
      
      * Fix formating
      
      * Remove grouped_conv3d_bw_data instances
      
      Underlying device operator is not ready to handle 3D input
      
      * Remove no-longer necessary include directive
      
      * Add missing include directive
      
      * Use more realistic conv param in example
      9e57a290
    • Rostyslav Geyyer's avatar
      Add pipeline v1/v2 selector, add more instances (#381) · 1a0b0e7b
      Rostyslav Geyyer authored
      
      
      * Add gridwise gemm pipeline v1/v2 selector
      
      * Pipeline selector working, test-wise add pipeline options to one instance
      
      * Add gemm instances
      
      * Add debug info to DeviceGemmXdl
      
      * Add debug info to DeviceGemmXdl_CShuffle
      
      * Add debug info to DeviceGemmXdl_CShuffle and instances to gemm_add_add_fastgelu
      
      * Minor fix
      
      * Add debug info to DeviceBatchedGemmXdl and instances to batched_gemm
      
      * set up inter-wave configuration
      
      * use defualt loop scheduling for supported gemm ops
      
      for blanket-applying interwave scheduling for all supported gemm ops, define macro CK_EXPERIMENTAL_DEFAULT_TO_INTER_WAVE_SCHEDULING=1. this should be discouraged though as it is not covered by CI
      
      * Add enum PipelineVersion
      
      * Update instances
      
      * Format
      
      * Fix the merge conflict
      
      * Add flags to disable added instances
      
      * Test disable flag check
      
      * Disable flag check
      
      * Enable the instances
      Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>
      1a0b0e7b
    • Adam Osewski's avatar
      Softmax unit-test reduction across all and non innermost dims cases. (#406) · 6d8614ee
      Adam Osewski authored
      
      
      * Add reduction across all dims cases.
      
      * host softmax: handle all reduce
      
      * Test cases when reduced dim is not innermost axis.
      
      * Fix syntax.
      
      * Test non innermost dim for fp32 and int8
      
      * Group test suites wrt NumReduceDim.
      
      * Additionally test failing cases.
      
      * Throw error when Rank or NumReduceDims doesn't match arguments.
      
      * Check reducedDims has correct values
      
      * Move don't reuse DeviceReduceMultiblock IsSupportedArgument method.
      Instead implement own. (in fact just get rid of one check to enable
      reduction across inner dimensions).
      
      * Reorganize unit tests to better cover use scenarios.
      
      * Test input validation
      * Test reduction of inner dimensions with custom op instances.
      
      * Refactor fp32 and int8 unit tests.
      
      * Fix FP32 instance template parameters.
      
      * Add more instances.
      
      * Instances with InSrcVectorDim=0.
      
      * Do not initialize and copy data when arg not supported.
      
      * ckProfiler Softmax use instance factory.
      
      * Refactor device softmax IsSupported.
      
      * Additionally add non-polymorphic api functions
      
      * Split softmax instances into multiple files.
      
      * Fix profiler.
      
      * Reorganize tests to reuse profiler and cover edge cases.
      
      * Clang-format
      
      * I8 Softmax instances along with UT.
      
      * Reuse type alias definitions from instance factory header.
      
      * Clean included headers
      
      * Fix variable names.
      
      * Add missing checks in Argument constructor.
      Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
      Co-authored-by: default avatarAnthony Chang <ac.chang@outlook.com>
      6d8614ee
    • rocking5566's avatar
      Conv perlayer int8 quantization (#471) · 226bc02b
      rocking5566 authored
      * Add conv2d requant example
      
      * Fix bash error
      
      * Rename example
      
      * 1. Rename gemm quantization
      2. shares the requantization lambda function with conv
      
      * Refine declare type
      
      * Add conv bias relu quantization exmaple
      
      * clang format
      
      * Fix compile error due to merge develop
      
      * Fix CI error
      
      * Extract quantization post operation into another file
      
      * Support quantization for non piecewise linear function
      
      * Add instance for conv quantization
      
      * Add convolution quantization factory
      
      * Add convolution quantization client example
      
      * Add more instances with different template parameters
      
      * clang format
      
      * Sync the naming with the develop
      226bc02b