Commit fd7eee0d authored by j4yan's avatar j4yan
Browse files

start adding navi21 GEMM

parent ac0d8066
......@@ -86,6 +86,17 @@ struct BlockwiseTensorSliceTransfer_v5r1
}
}
template <typename SrcBuffer>
__device__ void
RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf)
{
if(BlockSize == thread_cluster_desc_.GetElementSize() or
get_thread_local_1d_id() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunRead(src_desc, src_buf);
}
}
template <typename DstBuffer>
__device__ void RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf)
{
......
This diff is collapsed.
......@@ -83,12 +83,7 @@ template <index_t BlockSize,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGridStepHacks,
typename BGridStepHacks,
typename CGridStepHacks,
typename AGridMoveSliceWindowStepHacks,
typename BGridMoveSliceWindowStepHacks>
index_t CThreadTransferDstScalarPerVector>
struct GridwiseGemmDlops_km_kn_mn_v1r3
{
static constexpr auto I0 = Number<0>{};
......@@ -437,8 +432,8 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf, AGridStepHacks{});
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf, BGridStepHacks{});
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf);
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf);
a_blockwise_copy.RunWrite(a_k0_m0_m1_k1_block_desc, a_block_even_buf);
b_blockwise_copy.RunWrite(b_k0_n0_n1_k1_block_desc, b_block_even_buf);
......@@ -456,17 +451,15 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k0_m0_m1_k1_grid_desc,
a_block_slice_copy_step,
AGridMoveSliceWindowStepHacks{});
a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_k0_n0_n1_k1_grid_desc,
b_block_slice_copy_step,
BGridMoveSliceWindowStepHacks{});
b_block_slice_copy_step);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf, AGridStepHacks{});
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf, BGridStepHacks{});
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf);
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(c_m10_m11_n10_n11_thread_desc,
......@@ -480,17 +473,15 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k0_m0_m1_k1_grid_desc,
a_block_slice_copy_step,
AGridMoveSliceWindowStepHacks{});
a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_k0_n0_n1_k1_grid_desc,
b_block_slice_copy_step,
BGridMoveSliceWindowStepHacks{});
b_block_slice_copy_step);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf, AGridStepHacks{});
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf, BGridStepHacks{});
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf);
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(
......@@ -508,15 +499,15 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(
a_k0_m0_m1_k1_grid_desc, a_block_slice_copy_step, AGridMoveSliceWindowStepHacks{});
a_k0_m0_m1_k1_grid_desc, a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(
b_k0_n0_n1_k1_grid_desc, b_block_slice_copy_step, BGridMoveSliceWindowStepHacks{});
b_k0_n0_n1_k1_grid_desc, b_block_slice_copy_step);
__syncthreads();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf, AGridStepHacks{});
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf, BGridStepHacks{});
a_blockwise_copy.RunRead(a_k0_m0_m1_k1_grid_desc, a_global_buf);
b_blockwise_copy.RunRead(b_k0_n0_n1_k1_grid_desc, b_global_buf);
// LDS double buffer: GEMM on 2nd-last data
blockwise_gemm.Run(
......@@ -583,8 +574,7 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
make_tuple(I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_m0_m10_m11_n0_n10_n11_grid_desc,
c_grid_buf,
CGridStepHacks{});
c_grid_buf);
}
}
};
......
......@@ -33,6 +33,9 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp;
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp;
device_gemm_dlops_f32_f32_f32_km_kn_mn_instance.cpp;
)
add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE})
......
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_dlops.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_dlops_f32_f32_f32_km_kn_mn_instances =
std::tuple<
// clang-format off
// ##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|
// ##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess|
// ##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order|
// ##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDlops< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 8, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<4, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0 ,3>, S<4, 1, 1, 2>, S<1, 2, 0, 3>, S<1, 1, 1, 2>, S<4, 1, 1, 2>, S<2, 1, 128, 1>, S<1, 2, 0, 3>, S<1, 2, 0, 3>, S<4, 1, 1, 2>, S<1, 2, 0 3>, S<1, 1, 1, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>
// clang-format on
>;
void add_device_gemm_dlops_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances, device_gemm_dlops_f32_f32_f32_km_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_test_executable(test_gemm_dlops_fp32 gemm_fp32.cpp)
target_link_libraries(test_gemm_dlops_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_dlops_fp32 PRIVATE device_gemm_dlops_instance)
# add_test_executable(test_gemm_dlops_fp16 gemm_fp16.cpp)
# target_link_libraries(test_gemm_dlops_fp16 PRIVATE host_tensor)
# target_link_libraries(test_gemm_dlops_fp16 PRIVATE device_gemm_dlops_instance)
#
# add_test_executable(test_gemm_dlops_bf16 gemm_bf16.cpp)
# target_link_libraries(test_gemm_dlops_bf16 PRIVATE host_tensor)
# target_link_libraries(test_gemm_dlops_bf16 PRIVATE device_gemm_dlops_instance)
#
# add_test_executable(test_gemm_dlops_int8 gemm_int8.cpp)
# target_link_libraries(test_gemm_dlops_int8 PRIVATE host_tensor)
# target_link_libraries(test_gemm_dlops_int8 PRIVATE device_gemm_dlops_instance)
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_dlops_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_dlops_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
// void add_device_gemm_dlops_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
// void add_device_gemm_dlops_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
// void add_device_gemm_dlops_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = float;
using BDataType = float;
using CDataType = float;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_dlops_f32_f32_f32_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment