Unverified Commit f5ec04f0 authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Grouped Gemm with Fixed K and N with SplitK (#818)



* move all arguments into device

* add b2c_tile_map

* add examples

* add SetDeviceKernelArgs

* dedicated fixed_nk solution

* init client api

* add grouped_gemm_bias example

* add a instance

* add instances

* formatting

* fixed cmake

* Update EnableCompilerWarnings.cmake

* Update cmake-ck-dev.sh

* clean; fixed comments

* fixed comment

* add instances for fp32 output

* add instances for fp32 output

* add fp32 out client example

* fixed CI

* init commit for kbatch

* add splitk gridwise

* format

* fixed

* clean deviceop

* clean code

* finish splitk

* fixed instances

* change m_loops to tile_loops

* add setkbatch

* clean code

* add splitK+bias

* add instances

* opt mk_nk instances

* clean examples

* fixed CI

* remove zero

* finished non-zero

* clean

* clean code

* optimized global_barrier

* fixed ci

* fixed CI

* removed AddBias

* format

* fixed CI

* fixed CI

* move 20_grouped_gemm to 21_grouped_gemm

---------
Co-authored-by: default avatarJing Zhang <jizha@amd.com>
parent 866377de
add_executable(client_grouped_gemm_fixed_nk_bias_fp16 grouped_gemm_fixed_nk_bias_fp16.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_bias.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = F32;
using ALayout = Row;
using BLayout = Row;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
int group_count = Ms.size();
for(int i = 0; i < group_count; ++i)
{
Ns.push_back(768);
Ks.push_back(4608);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, d0_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
d0_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
d0_dev_bufs.emplace_back(sizeof(D0DataType) *
f_matrix_space_size(Ms[i], Ns[i], 0, D0Layout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back(
{a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
std::array<const void*, 1>{d0_dev_bufs[i].GetDeviceBuffer()},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
std::array<ck::index_t, 1>{0},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 1>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 2);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
add_custom_target(example_grouped_gemm_xdl) add_custom_target(example_grouped_gemm_xdl)
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp) add_example_executable(example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fp32) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fp32)
...@@ -7,10 +8,14 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) ...@@ -7,10 +8,14 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp) add_example_executable(example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp)
add_example_executable(example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp) add_example_executable(example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp16 grouped_gemm_xdl_fixed_nk_fp16.cpp)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_bias_fp16 grouped_gemm_xdl_fixed_nk_bias_fp16.cpp)
add_dependencies(example_grouped_gemm_xdl add_dependencies(example_grouped_gemm_xdl
example_grouped_gemm_xdl_fp16 example_grouped_gemm_xdl_fp16
example_grouped_gemm_multiple_d_dl_fp16 example_grouped_gemm_multiple_d_dl_fp16
example_grouped_gemm_xdl_splitk_fp16) example_grouped_gemm_xdl_splitk_fp16
example_grouped_gemm_xdl_fixed_nk_fp16
example_grouped_gemm_xdl_fixed_nk_bias_fp16)
endif() endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES) if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp) add_example_executable(example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = F32;
using ALayout = Row;
using BLayout = Row;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 128, 16, 128, 32, 8, 8, 16, 16, 1, 4, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int k_batch = 1;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<Tensor<D0DataType>> d0_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
d0_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, d0_tensors_device,
c_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
d0_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
d0_tensors.push_back(Tensor<D0DataType>(
f_host_tensor_descriptor(problem_size.Ms[i], problem_size.Ns[i], 0, ELayout{})));
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc << " d_m_n: " << d0_tensors[i].mDesc
<< " c_m_n: " << c_device_tensors[i].mDesc << std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(D0DataType) * d0_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
d0_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
using GroupedGemmKernelArgument = ck::tensor_operation::device::GroupedGemmKernelArgument<1>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * sum_of_m * problem_size.Ks[i]));
b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(BDataType) * problem_size.Ns[i] * problem_size.Ks[i]));
d0_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(D0DataType) * problem_size.Ns[i]));
c_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data(),
a_tensors[i].mDesc.GetElementSpaceSize() * sizeof(ADataType));
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data(),
b_tensors[i].mDesc.GetElementSpaceSize() * sizeof(BDataType));
d0_tensors_device[i]->ToDevice(d0_tensors[i].mData.data());
c_tensors_device[i]->SetZero();
gemm_descs.push_back({sum_of_m,
problem_size.Ns[i],
problem_size.Ks[i],
1,
problem_size.stride_Bs[i],
1,
{0}});
grouped_gemm_kernel_args_.push_back(
{a_tensors_device[i]->GetDeviceBuffer(),
b_tensors_device[i]->GetDeviceBuffer(),
std::array<const void*, 1>{d0_tensors_device[i]->GetDeviceBuffer()},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
std::array<ck::index_t, 1>{0},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
std::vector<const void*> p_As = {};
std::vector<const void*> p_Bs = {};
std::vector<std::array<const void*, 1>> p_Ds = {};
std::vector<void*> p_Cs = {};
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, cde_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
DeviceMem gemm_kernel_args_dev(gemm.GetDeviceKernelArgSize(&argument));
hip_check_error(hipMemcpy(gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
gemm.SetDeviceKernelArgs(argument, gemm_kernel_args_dev.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data(),
c_device_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
c_host_tensors[i],
a_element_op,
b_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < problem_size.Ms[i]; ++m)
{
for(int n = 0; n < problem_size.Ns[i]; ++n)
{
cde_element_op(
c_host_tensors[i](m, n), c_host_tensors[i](m, n), d0_tensors[i](m, n));
}
}
pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
}
}
return pass;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
problem_size.Ms = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0};
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ns.push_back(768);
problem_size.Ks.push_back(4608);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ns[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4: k_batch (>0)\n");
exit(0);
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F32;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
int k_batch = 1;
bool time_kernel = false;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<void*> p_Cs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc << " c_m_n: " << c_device_tensors[i].mDesc
<< std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
}
using GroupedGemmKernelArgument = ck::tensor_operation::device::GroupedGemmKernelArgument<>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * sum_of_m * problem_size.Ks[i]));
b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(BDataType) * problem_size.Ns[i] * problem_size.Ks[i]));
c_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data(),
a_tensors[i].mDesc.GetElementSpaceSize() * sizeof(ADataType));
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data(),
b_tensors[i].mDesc.GetElementSpaceSize() * sizeof(BDataType));
c_tensors_device[i]->SetZero();
p_Cs.push_back(c_tensors_device[i]->GetDeviceBuffer());
gemm_descs.push_back({sum_of_m,
problem_size.Ns[i],
problem_size.Ks[i],
1,
problem_size.stride_Bs[i],
1,
{}});
grouped_gemm_kernel_args_.push_back({a_tensors_device[i]->GetDeviceBuffer(),
b_tensors_device[i]->GetDeviceBuffer(),
{},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
{},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
std::vector<const void*> p_As = {};
std::vector<const void*> p_Bs = {};
std::vector<std::array<const void*, 0>> p_Ds = {};
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, c_element_op);
DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
hip_check_error(hipMemcpy(gemm_arg_dev_mem.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data(),
c_device_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
c_host_tensors[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
}
}
return pass;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
problem_size.Ms = {
167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ns.push_back(768);
problem_size.Ks.push_back(4608);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4: k_batch (> 0)\n");
exit(0);
}
return !run_grouped_gemm(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NumDTensor = 0>
struct GroupedGemmKernelArgument
{
const void* p_a_grid;
const void* p_b_grid;
std::array<const void*, NumDTensor> p_ds_grid;
void* p_e_grid;
index_t M;
index_t N;
index_t K;
index_t StrideA;
index_t StrideB;
std::array<index_t, NumDTensor> StrideDs;
index_t StrideE;
};
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGroupedGemmFixedNK : DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
virtual void SetDeviceKernelArgs(BaseArgument* p_arg, const void* kernel_args) const = 0;
virtual size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const = 0;
virtual void SetKBatch(BaseArgument* p_arg, index_t k_batch) const = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_splitk_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename GemmDesc,
GemmSpecialization GemmSpec,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename DsDataType,
typename Block2ETileMap,
typename GroupedGemmBlock2ETileMap,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_xdl_fixed_nk(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
uint32_t* barrier_count,
const index_t barrier_size_grp,
const index_t group_count,
const index_t grid_size_grp,
const index_t KBatch,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation c_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
const auto gemm_desc_ptr =
reinterpret_cast<const GemmDesc*>(cast_pointer_to_generic_address_space(gemm_descs_const));
const index_t group_id = block_id / grid_size_grp;
if(group_id >= group_count)
return;
const index_t M = gemm_desc_ptr[group_id].M;
const index_t N = gemm_desc_ptr[group_id].N;
const index_t K = gemm_desc_ptr[group_id].K;
if(M * N * K == 0)
return;
const auto StrideA = gemm_desc_ptr[group_id].StrideA;
const auto StrideB = gemm_desc_ptr[group_id].StrideB;
const auto StrideDs = gemm_desc_ptr[group_id].StrideDs;
const auto StrideE = gemm_desc_ptr[group_id].StrideE;
const auto e_grid_desc_m_n =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
const index_t BlockStart = group_id * grid_size_grp;
const auto local_b2e_tile_map = Block2ETileMap{e_grid_desc_m_n, KBatch};
const auto local_grid_size = local_b2e_tile_map.CalculateGridSize(e_grid_desc_m_n);
constexpr auto NumDTensor = DsDataType::Size();
using DsGridPointer = decltype(GridwiseGemm::MakeDsGridPointer());
DsGridPointer p_ds_grid_;
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(gemm_desc_ptr[group_id].p_ds_grid[i]);
});
index_t id_off = 0;
index_t id_local = get_block_1d_id() - BlockStart;
const index_t mn_blocks = local_grid_size / KBatch;
while(id_local < local_grid_size)
{
const auto block_2_etile_map =
GroupedGemmBlock2ETileMap(local_b2e_tile_map, BlockStart, id_off);
auto barrier_count_finished =
barrier_count + group_id * barrier_size_grp + id_local % mn_blocks;
GridwiseGemm::template Run<HasMainKBlockLoop,
EGlobalMemoryDataOperation,
GemmSpec,
ALayout,
BLayout,
DsLayout,
ELayout>(gemm_desc_ptr[group_id].p_a_grid,
gemm_desc_ptr[group_id].p_b_grid,
p_ds_grid_,
gemm_desc_ptr[group_id].p_e_grid,
p_shared,
barrier_count_finished,
a_element_op,
b_element_op,
c_element_op,
M,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideE,
KBatch,
block_2_etile_map);
id_off += grid_size_grp;
id_local += grid_size_grp;
}
#else
ignore = gemm_descs_const;
ignore = barrier_count;
ignore = barrier_size_grp;
ignore = group_count;
ignore = grid_size_grp;
ignore = KBatch;
ignore = a_element_op;
ignore = b_element_op;
ignore = c_element_op;
#endif
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
ck::index_t NumPrefetch,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t KPerBlock,
ck::index_t AK1,
ck::index_t BK1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGroupedGemm_Xdl_Fixed_NK;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_splitk_cshuffle<
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
NumPrefetch, // NumGemmKPrefetchStage
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
template <typename UnderlyingBlockToCTileMap>
struct OffsettedBlockToCTileMapMLoops
{
using underlying_type = UnderlyingBlockToCTileMap;
__host__ __device__ OffsettedBlockToCTileMapMLoops(
UnderlyingBlockToCTileMap block_to_ctile_map, index_t block_start, index_t id_off = 0)
{
block_to_ctile_map_ = block_to_ctile_map;
block_start_ = block_start;
id_off_ = id_off;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
auto idx_bot = block_to_ctile_map_.CalculateBottomIndex(
make_multi_index(idx_top[Number<0>{}] - block_start_ + id_off_));
return make_tuple(idx_bot[Number<0>{}], idx_bot[Number<1>{}], idx_bot[Number<2>{}]);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_to_ctile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
template <typename CGridDesc_M_N>
__host__ bool CheckValidity(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CheckValidity(c_grid_desc_m_n);
}
template <typename CGridDesc_M_N>
__host__ constexpr index_t CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return block_to_ctile_map_.CalculateGridSize(c_grid_desc_m_n);
}
UnderlyingBlockToCTileMap block_to_ctile_map_;
index_t block_start_;
index_t id_off_;
};
template <index_t MPerBlock_, index_t NPerBlock_>
struct BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops() = default;
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops(
const BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops&) = default;
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops&&) = default;
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops&
operator=(const BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops&) = default;
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops&
operator=(BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops&&) = default;
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops(index_t M,
index_t N,
index_t KBatch,
index_t M01 = 8)
: M_(M), N_(N), KBatch_(KBatch), M01_(M01)
{
}
template <typename CGridDesc_M_N>
__host__ __device__ BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops(
const CGridDesc_M_N& c_grid_desc_m_n, index_t KBatch, index_t M01 = 8)
: BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops(
c_grid_desc_m_n.GetLength(I0), c_grid_desc_m_n.GetLength(I1), KBatch, M01)
{
}
__host__ __device__ constexpr index_t CalculateGridSize(index_t M, index_t N) const
{
const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock);
return M0 * N0 * KBatch_;
}
template <typename CGridDesc_M_N>
__host__ __device__ constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n) const
{
return CalculateGridSize(c_grid_desc_m_n.GetLength(I0), c_grid_desc_m_n.GetLength(I1));
}
template <typename CGridDesc_M_N>
__host__ bool CheckValidity(const CGridDesc_M_N& /* c_grid_desc_m_n */) const
{
return true;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
auto block_1d_id = idx_top[I0];
const auto M0 = math::integer_divide_ceil(M_, MPerBlock_);
const auto N0 = math::integer_divide_ceil(N_, NPerBlock_);
block_1d_id = block_1d_id % (M0 * N0 * KBatch_); // hide groups
const index_t idx_ksplit = block_1d_id / (M0 * N0);
block_1d_id = block_1d_id % (M0 * N0);
index_t idx_N0 = block_1d_id % N0;
index_t idx_M0 = block_1d_id / N0;
const auto M01_adapt = (idx_M0 < M0 - M0 % M01_) ? M01_ : M0 % M01_;
index_t idx_M00 = idx_M0 / M01_;
index_t idx_M01 = idx_M0 % M01_;
index_t idx_N0_M01_local = idx_N0 + idx_M01 * N0;
return make_tuple(idx_ksplit,
idx_N0_M01_local % M01_adapt + idx_M00 * M01_,
idx_N0_M01_local / M01_adapt);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& /* c_tile_idx */,
const CTileDim& /* c_tile_dim */) const
{
return true; // always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t M_;
index_t N_;
index_t KBatch_;
index_t M01_;
};
using Block2ETileMap = BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops<MPerBlock, NPerBlock>;
using GroupedGemmBlock2ETileMap = OffsettedBlockToCTileMapMLoops<Block2ETileMap>;
struct GemmBiasTransKernelArg
{
// pointers
const void* a_ptr_;
const void* b_ptr_;
std::array<const void*, NumDTensor> ds_ptr_;
void* e_ptr_;
index_t M_, N_, K_;
index_t StrideA_, StrideB_;
std::array<index_t, NumDTensor> StrideDs_;
index_t StrideE_;
};
// Argument
struct Argument : public BaseArgument
{
void UpdateKBatch(index_t k_batch)
{
k_batch_ = k_batch;
if(k_batch_ < 1)
{
throw std::runtime_error("wrong! k_batch must be > 0");
}
const index_t AverM = math::integer_divide_ceil(sum_of_m, group_count_);
const index_t StrideE = gemm_desc_kernel_arg_[0].StrideE_;
const index_t N = gemm_desc_kernel_arg_[0].N_;
const auto e_grid_desc_m_n =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(
AverM, N, StrideE);
const auto local_b2c_tile_map = Block2ETileMap{e_grid_desc_m_n, k_batch_};
grid_size_grp_ = local_b2c_tile_map.CalculateGridSize(e_grid_desc_m_n);
grid_size_ = grid_size_grp_ * group_count_;
}
Argument(std::vector<const void*>&,
std::vector<const void*>&,
std::vector<std::array<const void*, NumDTensor>>&,
std::vector<void*>&,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation c_element_op)
: a_element_op_{a_element_op}, b_element_op_{b_element_op}, c_element_op_{c_element_op}
{
grid_size_ = 0;
k_batch_ = 1;
grouped_gemm_kernel_args_dev = nullptr;
group_count_ = ck::type_convert<ck::index_t>(gemm_descs.size());
gemm_desc_kernel_arg_.reserve(group_count_);
index_t group_id = 0;
sum_of_m = gemm_descs[0].M_;
const index_t AverM = math::integer_divide_ceil(sum_of_m, group_count_);
const index_t N = gemm_descs[0].N_;
const index_t K = gemm_descs[0].K_;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
if(sum_of_m != gemm_descs[i].M_ || N != gemm_descs[i].N_ || K != gemm_descs[i].K_)
{
throw std::runtime_error("wrong! M/N/K is not identical");
}
a_mtx_mraw_kraw_.emplace_back(sum_of_m, K);
b_mtx_nraw_kraw_.emplace_back(N, K);
const index_t StrideA = gemm_descs[i].stride_A_;
const index_t StrideB = gemm_descs[i].stride_B_;
const index_t StrideE = gemm_descs[i].stride_C_;
// pointer
std::array<const void*, NumDTensor> p_ds_grid;
static_for<0, NumDTensor, 1>{}([&](auto j) { p_ds_grid[j] = nullptr; });
std::array<index_t, NumDTensor> StrideDs;
static_for<0, NumDTensor, 1>{}([&](auto j) {
// using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
if(gemm_descs[i].stride_Ds_.size() != NumDTensor)
{
throw std::runtime_error(
"wrong! gemm_descs[i].stride_Ds_.size() does not match NumDTensor");
}
StrideDs[j] = gemm_descs[i].stride_Ds_[j];
});
const auto e_grid_desc_m_n =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(
AverM, N, StrideE);
// block-to-e-tile map
const auto local_b2c_tile_map = Block2ETileMap{e_grid_desc_m_n, k_batch_};
grid_size_grp_ = local_b2c_tile_map.CalculateGridSize(e_grid_desc_m_n);
if(group_id * grid_size_grp_ != grid_size_)
{
throw std::runtime_error("wrong! grid_size_grp_ is not identical!");
}
grid_size_ += grid_size_grp_;
// check block-to-E-tile
if(!local_b2c_tile_map.CheckValidity(e_grid_desc_m_n))
{
throw std::runtime_error("wrong! block_2_etile_map validation failed");
}
if(!GridwiseGemm::
template CheckValidity<ALayout, BLayout, DsLayout, ELayout, GemmSpec>(
AverM, N, K, StrideA, StrideB, StrideDs, StrideE, 1))
{
throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
}
gemm_desc_kernel_arg_.push_back(GemmBiasTransKernelArg{
nullptr,
nullptr,
p_ds_grid,
nullptr,
AverM,
N,
K,
StrideA,
StrideB,
StrideDs,
StrideE,
});
group_id++;
}
const auto e_grid_desc_sum_m_n =
GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(
sum_of_m, gemm_desc_kernel_arg_[0].N_, gemm_desc_kernel_arg_[0].StrideE_);
const auto local_b2c_tile_map = Block2ETileMap{e_grid_desc_sum_m_n, 1};
barrier_size_grp_ = local_b2c_tile_map.CalculateGridSize(e_grid_desc_sum_m_n);
}
// private:
index_t group_count_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation c_element_op_;
std::vector<GemmBiasTransKernelArg> gemm_desc_kernel_arg_;
std::vector<Tuple<index_t, index_t>> a_mtx_mraw_kraw_;
std::vector<Tuple<index_t, index_t>> b_mtx_nraw_kraw_;
const void* grouped_gemm_kernel_args_dev;
index_t grid_size_;
index_t grid_size_grp_;
index_t barrier_size_grp_;
index_t sum_of_m;
index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
bool has_main_k_block_loop = true;
for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
{
const auto KPad =
GridwiseGemm::CalculateKPadded(arg.gemm_desc_kernel_arg_[i].K_, arg.k_batch_);
if(GridwiseGemm::CalculateHasMainKBlockLoop(KPad) != has_main_k_block_loop)
{
throw std::runtime_error("wrong! not all gemm has_main_k_block_loop");
}
}
if(arg.grouped_gemm_kernel_args_dev == nullptr)
{
throw std::runtime_error("wrong! grouped_gemm_kernel_args_dev is nullpr");
}
float ave_time = 0;
auto launch_kernel = [&](auto has_main_k_block_loop_, auto e_global_memory_operation_) {
const auto kernel =
kernel_grouped_gemm_xdl_fixed_nk<GridwiseGemm,
GroupedGemmKernelArgument<NumDTensor>,
GemmSpec,
ALayout,
BLayout,
DsLayout,
ELayout,
DsDataType,
Block2ETileMap,
GroupedGemmBlock2ETileMap,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
e_global_memory_operation_,
has_main_k_block_loop_>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(arg.grouped_gemm_kernel_args_dev),
reinterpret_cast<uint32_t*>(arg.p_workspace_),
arg.barrier_size_grp_,
arg.gemm_desc_kernel_arg_.size(),
arg.grid_size_grp_,
arg.k_batch_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_);
};
constexpr auto AtomicAdd = InMemoryDataOperationEnum::AtomicAdd;
constexpr auto Set = InMemoryDataOperationEnum::Set;
if(arg.k_batch_ > 1)
{
if(has_main_k_block_loop)
{
ave_time =
launch_kernel(integral_constant<bool, true>{},
integral_constant<InMemoryDataOperationEnum, AtomicAdd>{});
}
else
{
ave_time =
launch_kernel(integral_constant<bool, false>{},
integral_constant<InMemoryDataOperationEnum, AtomicAdd>{});
}
}
else
{
if(has_main_k_block_loop)
{
ave_time = launch_kernel(integral_constant<bool, true>{},
integral_constant<InMemoryDataOperationEnum, Set>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{},
integral_constant<InMemoryDataOperationEnum, Set>{});
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::type_convert<ck::index_t>(arg.gemm_desc_kernel_arg_.size()) != arg.group_count_)
{
return false;
}
bool supported = true;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if constexpr(GemmSpec != GemmSpecialization::Default)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const auto a_raw_vector_dim = ABlockTransferSrcVectorDim != 1 ? 1 : 0;
const auto b_raw_vector_dim = BBlockTransferSrcVectorDim != 1 ? 1 : 0;
for(index_t i = 0; i < arg.group_count_; ++i)
{
const auto a_vector_dim = arg.a_mtx_mraw_kraw_[i].At(Number<a_raw_vector_dim>{});
const auto b_vector_dim = arg.b_mtx_nraw_kraw_[i].At(Number<b_raw_vector_dim>{});
supported = supported & (a_vector_dim % ABlockTransferSrcScalarPerVector == 0);
supported = supported & (b_vector_dim % BBlockTransferSrcScalarPerVector == 0);
}
}
return supported;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc> gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation c_element_op)
{
return Argument{
p_As, p_Bs, p_Ds, p_Es, gemm_descs, a_element_op, b_element_op, c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(
p_As, p_Bs, p_Ds, p_Es, gemm_descs, a_element_op, b_element_op, c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemm_Xdl_Fixed_NK"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec)
<< ">";
// clang-format on
return str.str();
}
static void SetDeviceKernelArgs(Argument& arg, const void* kernel_args)
{
arg.grouped_gemm_kernel_args_dev = kernel_args;
}
// polymorphic
void SetDeviceKernelArgs(BaseArgument* p_arg, const void* kernel_args) const override
{
return SetDeviceKernelArgs(*dynamic_cast<Argument*>(p_arg), kernel_args);
}
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
auto arg = *dynamic_cast<const Argument*>(p_arg);
return arg.group_count_ * arg.barrier_size_grp_ * sizeof(uint32_t);
}
size_t GetDeviceKernelArgSize(const BaseArgument* p_arg) const override
{
auto arg = *dynamic_cast<const Argument*>(p_arg);
return arg.group_count_ * sizeof(GroupedGemmKernelArgument<NumDTensor>);
}
void SetWorkSpacePointer(BaseArgument* p_arg, void* p_workspace) const override
{
auto p_arg_ = dynamic_cast<Argument*>(p_arg);
p_arg_->p_workspace_ = p_workspace;
hip_check_error(hipMemset(p_workspace, 0, GetWorkSpaceSize(p_arg)));
}
static void SetKBatch(Argument& arg, index_t k_batch) { arg.UpdateKBatch(k_batch); }
// polymorphic
void SetKBatch(BaseArgument* p_arg, index_t k_batch) const override
{
return SetKBatch(*dynamic_cast<Argument*>(p_arg), k_batch);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -36,6 +36,13 @@ struct Add ...@@ -36,6 +36,13 @@ struct Add
y = x0 + type_convert<half_t>(x1); y = x0 + type_convert<half_t>(x1);
}; };
template <>
__host__ __device__ constexpr void
operator()<half_t>(half_t& y, const float& x0, const float& x1) const
{
y = type_convert<half_t>(x0 + x1);
};
template <> template <>
__host__ __device__ constexpr void __host__ __device__ constexpr void
operator()<half_t>(half_t& y, const float& x0, const half_t& x1) const operator()<half_t>(half_t& y, const float& x0, const half_t& x1) const
......
...@@ -587,7 +587,8 @@ struct OffsettedBlockToCTileMap ...@@ -587,7 +587,8 @@ struct OffsettedBlockToCTileMap
{ {
using underlying_type = UnderlyingBlockToCTileMap; using underlying_type = UnderlyingBlockToCTileMap;
OffsettedBlockToCTileMap(UnderlyingBlockToCTileMap block_to_ctile_map, index_t block_start) __host__ __device__ OffsettedBlockToCTileMap(UnderlyingBlockToCTileMap block_to_ctile_map,
index_t block_start)
{ {
block_to_ctile_map_ = block_to_ctile_map; block_to_ctile_map_ = block_to_ctile_map;
block_start_ = block_start; block_start_ = block_start;
......
...@@ -15,6 +15,9 @@ ...@@ -15,6 +15,9 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp" #include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace ck { namespace ck {
// GEMM: // GEMM:
...@@ -74,6 +77,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -74,6 +77,8 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
{ {
static constexpr index_t NumDTensor = DsDataType::Size(); static constexpr index_t NumDTensor = DsDataType::Size();
using GemmSpecialization = ck::tensor_operation::device::GemmSpecialization;
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{}; static constexpr auto I2 = Number<2>{};
...@@ -330,6 +335,94 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -330,6 +335,94 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
using DsGridPointer = decltype(MakeDsGridPointer()); using DsGridPointer = decltype(MakeDsGridPointer());
template <typename ALayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeAGridDescriptor_M_K(index_t MRaw, index_t KRaw, index_t StrideA)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
template <typename BLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBGridDescriptor_N_K(index_t KRaw, index_t NRaw, index_t StrideB)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
return matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
}
template <typename ELayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeEGridDescriptor_M_N<DLayout, GemmSpec>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
__device__ __host__ static constexpr auto GetMPerBlock() { return MPerBlock; }
template <bool HasMainKBlockLoop, template <bool HasMainKBlockLoop,
typename AGridDesc_AK0_M_AK1, typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1, typename BGridDesc_BK0_N_BK1,
...@@ -758,6 +851,85 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -758,6 +851,85 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
}); });
} }
} }
template <bool HasMainKBlockLoop,
GemmSpecialization GemmSpec,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename Block2ETileMap>
__device__ static void Run(const void* __restrict__ p_a_grid_,
const void* __restrict__ p_b_grid_,
DsGridPointer p_ds_grid,
void* __restrict__ p_e_grid_,
void* __restrict__ p_shared,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const Block2ETileMap& block_2_etile_map)
{
const auto p_a_grid = reinterpret_cast<const ADataType*>(p_a_grid_);
const auto p_b_grid = reinterpret_cast<const BDataType*>(p_b_grid_);
const auto p_e_grid = reinterpret_cast<EDataType*>(p_e_grid_);
// tensor descriptors for problem definiton
const auto a_grid_desc_m_k = MakeAGridDescriptor_M_K<ALayout, GemmSpec>(M, K, StrideA);
const auto b_grid_desc_n_k = MakeBGridDescriptor_N_K<BLayout, GemmSpec>(K, N, StrideB);
using DsGridDesc_M_N =
remove_cvref_t<decltype(MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>({}, {}, {}))>;
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_m_n(j) = MakeEGridDescriptor_M_N<DLayout, GemmSpec>(M, N, StrideDs[j]);
});
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_ak0_m_ak1 = MakeDefaultAGridDescriptor_AK0_M_AK1(a_grid_desc_m_k);
const auto b_grid_desc_bk0_n_bk1 = MakeDefaultBGridDescriptor_BK0_N_BK1(b_grid_desc_n_k);
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock ds_grid_desc_mblock_mperblock_nblock_nperblock;
static_for<0, NumDTensor, 1>{}([&](auto j) {
ds_grid_desc_mblock_mperblock_nblock_nperblock(j) =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[j]);
});
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n);
Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
}; };
} // namespace ck } // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
namespace ck {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename ABDataType, // FIXME: don't assume A/B have same datatype
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1Value,
index_t BK1Value,
index_t MPerXdl,
index_t NPerXdl,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool AThreadTransferSrcResetCoordinateAfterRun,
index_t ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BThreadTransferSrcResetCoordinateAfterRun,
index_t BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
PipelineVersion PipelineVer = PipelineVersion::v1>
struct GridwiseGemmMultipleD_xdl_splitk_cshuffle
{
static constexpr index_t NumDTensor = DsDataType::Size();
using GemmSpecialization = ck::tensor_operation::device::GemmSpecialization;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto AK0PerBlock = Number<KPerBlock / AK1Value>{};
static constexpr auto BK0PerBlock = Number<KPerBlock / BK1Value>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<
decltype(GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>())>;
// denorm test fix, required to work around fp16 mfma issue
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if CK_WORKAROUND_DENORM_FIX
using ABDataTypeAdjusted =
conditional_t<is_same_v<ABDataType, ck::half_t>, ck::bhalf_t, ABDataType>;
#else
using ABDataTypeAdjusted = ABDataType;
#endif
__host__ __device__ static constexpr auto GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(AK0PerBlock * Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
Number<MPerBlock + ABlockLdsExtraM>{} * AK1,
AK1,
I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(I1, BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(BK0PerBlock * Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
Number<NPerBlock + BBlockLdsExtraN>{} * BK1,
BK1,
I1));
}
__host__ __device__ static constexpr auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
{
// A matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(AK0PerBlock, Number<MPerBlock>{}, AK1),
make_tuple(Number<MPerBlock + ABlockLdsExtraM>{} * AK1, AK1, I1));
}
__host__ __device__ static constexpr auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
{
// B matrix in LDS memory, dst of blockwise copy
return make_naive_tensor_descriptor(
make_tuple(BK0PerBlock, Number<NPerBlock>{}, BK1),
make_tuple(Number<NPerBlock + BBlockLdsExtraN>{} * BK1, BK1, I1));
}
__host__ __device__ static constexpr auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
{
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1,
Number<CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl>{},
I1,
Number<CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>{}));
return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
}
// ck::Tuple<const D0DataType*, const D1DataType*, ...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size_aligned = math::integer_least_multiple(
b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
// LDS allocation for C shuffle in LDS
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
constexpr auto c_block_size =
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
return math::max((a_block_space_size_aligned + b_block_space_size_aligned) *
sizeof(ABDataType),
c_block_size * sizeof(CShuffleDataType));
}
__host__ __device__ static auto CalculateMPadded(index_t M)
{
return math::integer_least_multiple(M, MPerBlock);
}
__host__ __device__ static auto CalculateNPadded(index_t N)
{
return math::integer_least_multiple(N, NPerBlock);
}
__host__ __device__ static auto CalculateKPadded(index_t K, index_t K_Batch)
{
return math::integer_least_multiple(K, KPerBlock * K_Batch);
}
template <typename ALayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeAGridDescriptor_KBatch_AK0_M_AK1(index_t M, index_t K, index_t StrideA, index_t KBatch)
{
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto MPad = CalculateMPadded(M);
const auto KPad = CalculateKPadded(K, KBatch);
const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_pass_through_transform(M), make_right_pad_transform(K, KPad - K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto AK0 = KPad / (KBatch * AK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::MPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_right_pad_transform(M, MPad - M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_kpad,
make_tuple(make_unmerge_transform(make_tuple(KBatch, AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
template <typename BLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeBGridDescriptor_KBatch_BK0_N_BK1(index_t K, index_t N, index_t StrideB, index_t KBatch)
{
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto NPad = CalculateNPadded(N);
const auto KPad = CalculateKPadded(K, KBatch);
const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto BK0 = KPad / (KBatch * BK1);
if constexpr(GemmSpec == tensor_operation::device::GemmSpecialization::NPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::NKPadding ||
GemmSpec == tensor_operation::device::GemmSpecialization::MNKPadding)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_right_pad_transform(N, NPad - N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_kpad_n,
make_tuple(make_unmerge_transform(make_tuple(KBatch, BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
}
}
// E desc for destination in blockwise copy
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const EGridDesc_M_N& e_grid_desc_m_n)
{
const auto M = e_grid_desc_m_n.GetLength(I0);
const auto N = e_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
make_unmerge_transform(make_tuple(NBlock, Number<NPerBlock>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1>{}, Sequence<2, 3>{}));
return e_grid_desc_mblock_mperblock_nblock_nperblock;
}
// Ds desc for source in blockwise copy
template <typename DsGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const DsGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[i]);
},
Number<NumDTensor>{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
template <typename EGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeDefaultBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n)
{
return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, EGridDesc_M_N>(
e_grid_desc_m_n);
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
GemmSpecialization GemmSpec>
__host__ __device__ static constexpr bool
CheckValidity(const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch)
{
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
ignore = StrideDs;
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
#if 0
// check tile size
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K % KPerBlock == 0))
{
return false;
}
#endif
// check gridwise gemm pipeline
const auto num_k_loop = K / KPerBlock;
if(!GridwiseGemmPipe::IsSupported(num_k_loop))
{
return false;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize() * sizeof(ABDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
__host__ __device__ static constexpr bool CalculateHasMainKBlockLoop(index_t K)
{
const index_t num_loop = K / KPerBlock;
return GridwiseGemmPipe::CalculateHasMainLoop(num_loop);
}
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename ELayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
constexpr auto matrix_padder =
ck::tensor_operation::device::MatrixPadder<GemmSpec, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock};
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return MakeEGridDescriptor_M_N<DLayout, GemmSpec>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
__device__ __host__ static constexpr auto GetMPerBlock() { return MPerBlock; }
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
index_t NumDTensor_,
typename DsDataType_,
typename AGridDesc_KBatch_AK0_M_AK1,
typename BGridDesc_KBatch_BK0_N_BK1,
typename DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
typename CDEElementwiseOperation_,
typename Block2ETileMap>
__device__ static void Run(const ABDataType* __restrict__ p_a_grid,
const ABDataType* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const index_t KBatch,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation_& cde_element_op,
const AGridDesc_KBatch_AK0_M_AK1& a_grid_desc_kbatch_ak0_m_ak1,
const BGridDesc_KBatch_BK0_N_BK1& b_grid_desc_kbatch_bk0_n_bk1,
const DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock&
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap& block_2_etile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_kbatch_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_kbatch_bk0_n_bk1.GetElementSpaceSize());
const auto ds_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_ds_grid[i],
ds_grid_desc_mblock_mperblock_nblock_nperblock[i].GetElementSpaceSize());
},
Number<NumDTensor_>{});
auto e_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_e_grid, e_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
// divide block work by [M, N]
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I2] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = math::lcm(AK1, BK1);
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_kbatch_ak0_m_ak1 =
GetABlockDescriptor_KBatch_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_kbatch_bk0_n_bk1 =
GetBBlockDescriptor_KBatch_BK0PerBlock_NPerBlock_BK1();
// A matrix blockwise copy
auto a_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, AK0PerBlock, MPerBlock, AK1>,
ABlockTransferThreadClusterLengths_KBatch_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataTypeAdjusted,
decltype(a_grid_desc_kbatch_ak0_m_ak1),
decltype(a_block_desc_kbatch_ak0_m_ak1),
ABlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
ABlockTransferSrcVectorDim,
3,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
a_grid_desc_kbatch_ak0_m_ak1,
make_multi_index(kbatch_id, 0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_kbatch_ak0_m_ak1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
ThreadGroupTensorSliceTransfer_v4r1<ThisThreadBlock,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum::Set,
Sequence<1, BK0PerBlock, NPerBlock, BK1>,
BBlockTransferThreadClusterLengths_KBatch_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
ABDataType,
ABDataTypeAdjusted,
decltype(b_grid_desc_kbatch_bk0_n_bk1),
decltype(b_block_desc_kbatch_bk0_n_bk1),
BBlockTransferSrcAccessOrder,
Sequence<2, 0, 1, 3>,
BBlockTransferSrcVectorDim,
3,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true,
NumGemmKPrefetchStage>(
b_grid_desc_kbatch_bk0_n_bk1,
make_multi_index(kbatch_id, 0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_kbatch_bk0_n_bk1,
make_multi_index(0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_ak0_m_ak1 = GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_bk0_n_bk1 = GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1();
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ABDataTypeAdjusted, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
ABDataTypeAdjusted,
AccDataType,
decltype(a_block_desc_ak0_m_ak1),
decltype(b_block_desc_bk0_n_bk1),
MPerXdl,
NPerXdl,
MXdlPerWave,
NXdlPerWave,
KPack,
LoopSched>();
#if 1
if(block_work_idx[I0] == 0)
{
const index_t nThreadSize = CDEShuffleBlockTransferScalarPerVector_NPerBlock;
const index_t numNThreads = NPerBlock / nThreadSize;
const index_t numMThreads = BlockSize / numNThreads;
const index_t mThreadSize = MPerBlock / numMThreads;
const index_t m_tid = get_thread_local_1d_id() / numNThreads;
const index_t n_tid = get_thread_local_1d_id() % numNThreads;
auto c_thread_desc_mblock_mperblock_nblock_nperblock =
make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<mThreadSize>{}, I1, Number<nThreadSize>{}));
StaticBuffer<AddressSpaceEnum::Vgpr,
EDataType,
c_thread_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize(),
true>
e_thread_zero_buf;
auto c_thread_copy = ThreadwiseTensorSliceTransfer_v1r3<
EDataType,
EDataType,
decltype(c_thread_desc_mblock_mperblock_nblock_nperblock),
decltype(e_grid_desc_mblock_mperblock_nblock_nperblock),
ck::tensor_operation::element_wise::PassThrough,
Sequence<1, mThreadSize, 1, nThreadSize>,
Sequence<0, 1, 2, 3>,
3,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
InMemoryDataOperationEnum::Set,
1,
true>{e_grid_desc_mblock_mperblock_nblock_nperblock,
make_multi_index(block_work_idx[I1],
m_tid * mThreadSize,
block_work_idx[I2],
n_tid * nThreadSize),
ck::tensor_operation::element_wise::PassThrough{}};
c_thread_copy.Run(c_thread_desc_mblock_mperblock_nblock_nperblock,
make_tuple(I0, I0, I0, I0),
e_thread_zero_buf,
e_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_buf);
__syncthreads();
if(threadIdx.x == 0)
{
atomicAdd(barrier_count_finished, 1);
}
}
#endif
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size_aligned = math::integer_least_multiple(
a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataTypeAdjusted*>(p_shared),
a_block_desc_ak0_m_ak1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ABDataTypeAdjusted*>(p_shared) + a_block_space_size_aligned,
b_block_desc_bk0_n_bk1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(0, KPerBlock / AK1, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(0, KPerBlock / BK1, 0, 0);
// gridwise GEMM pipeline
const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage, LoopSched>();
const index_t num_k_block_main_loop =
__builtin_amdgcn_readfirstlane((a_grid_desc_kbatch_ak0_m_ak1.GetLength(I1) *
a_grid_desc_kbatch_ak0_m_ak1.GetLength(I3)) /
KPerBlock);
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_kbatch_ak0_m_ak1,
a_block_desc_kbatch_ak0_m_ak1,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_grid_desc_kbatch_bk0_n_bk1,
b_block_desc_kbatch_bk0_n_bk1,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
// shuffle C and write out
{
if(threadIdx.x == 0)
{
while(__atomic_load_n(barrier_count_finished, __ATOMIC_RELAXED) == 0) {}
}
__syncthreads();
static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
constexpr index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock();
auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<CShuffleDataType*>(p_shared),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
make_tuple(
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleMXdlPerWavePerShuffle>{}, // M0 (MXdlPerWave) per shuffle
M1, // M1 = MWave
M2, // M2 * M3 * M4 = MPerXdl
M3,
M4)),
make_freeze_transform(I0),
make_unmerge_transform(make_tuple(
Number<CShuffleNXdlPerWavePerShuffle>{}, // N0 (NXdlPerWave) per shuffle
N1, // N1 = NWave
N2))), // N2 = NPerXdl
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(
Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// shuffle: threadwise copy C from VGPR to LDS
auto c_thread_copy_vgpr_to_lds =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
CShuffleDataType,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
I1,
I1,
M2,
I1,
M4,
I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum::Set,
1,
true>{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_desc_refs = concat_tuple_of_reference(
tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
Number<NumDTensor_>{}));
// tuple of reference to C/Ds tensor descriptors
const auto c_ds_buf_refs = concat_tuple_of_reference(
tie(c_shuffle_block_buf),
generate_tie(
[&](auto i) -> const auto& // return type should be reference
{ return ds_grid_buf[i]; },
Number<NumDTensor_>{}));
// tuple of starting index of C/Ds blockwise copy
const auto idx_c_ds_block_begin = container_concat(
make_tuple(make_multi_index(0, 0, 0, 0)),
generate_tuple(
[&](auto) {
return make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0);
},
Number<NumDTensor_>{}));
// space filling curve for threadwise C in VGPR before shuffle
constexpr auto sfc_c_vgpr =
SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
Sequence<CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
1,
1,
M2,
1,
M4,
1>>{};
// space filling curve for shuffled blockwise C/D/E
constexpr auto sfc_cde_block =
SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
Sequence<0, 2, 1, 3>,
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
constexpr index_t num_access = sfc_c_vgpr.GetNumOfAccess();
static_assert(num_access == sfc_cde_block.GetNumOfAccess(), "wrong!");
// blockwise copy C/D/E between LDS and global
auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock,
decltype(container_concat(make_tuple(CShuffleDataType{}), DsDataType_{})),
Tuple<EDataType>,
decltype(c_ds_desc_refs),
decltype(tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
CDEElementwiseOperation_,
Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>, // FIXME: make
// Sequence support
// arbitray type
Sequence<1,
CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
1,
CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>, // BlockSliceLengths,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
Sequence<0, 1, 2, 3>, // typename ThreadClusterArrangeOrder,
Sequence<0, 1, 2, 3>, // typename DimAccessOrder,
3, // index_t VectorDim,
CDEShuffleBlockTransferScalarPerVector_NPerBlock,
sequence_merge_t<
Sequence<true>,
uniform_sequence_gen_t<NumDTensor_,
false>>, // ThreadTransferSrcResetCoordinateAfterRunFlags
Sequence<false>> // ThreadTransferDstResetCoordinateAfterRunFlags
{c_ds_desc_refs,
idx_c_ds_block_begin,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
make_tuple(make_multi_index(block_work_idx[I1], 0, block_work_idx[I2], 0)),
cde_element_op};
static_for<0, num_access, 1>{}([&](auto access_id) {
// make sure it's safe to write to LDS
block_sync_lds();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_shuffle_block_buf);
// make sure it's safe to read from LDS
block_sync_lds();
// each block copy its data from LDS to global
cde_block_copy_lds_and_global.Run(
c_ds_desc_refs,
c_ds_buf_refs,
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
tie(e_grid_buf));
if constexpr(access_id < num_access - 1)
{
constexpr auto cde_lds_and_global_step =
sfc_cde_block.GetForwardStep(access_id);
// move on Ds
static_for<0, NumDTensor_, 1>{}([&](auto i) {
cde_block_copy_lds_and_global.MoveSrcSliceWindow(
c_ds_desc_refs, i + I1, cde_lds_and_global_step);
});
// move on E
cde_block_copy_lds_and_global.MoveDstSliceWindow(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
I0,
cde_lds_and_global_step);
}
});
if(threadIdx.x == 0)
{
index_t k_id_finished_t = atomicAdd(barrier_count_finished, 1);
if(k_id_finished_t == KBatch)
{
*barrier_count_finished = 0;
}
}
}
}
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum EGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename Block2ETileMap>
__device__ static void Run(const void* __restrict__ p_a_grid_,
const void* __restrict__ p_b_grid_,
DsGridPointer p_ds_grid,
void* __restrict__ p_e_grid_,
void* __restrict__ p_shared,
uint32_t* barrier_count_finished,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op,
const index_t M,
const index_t N,
const index_t K,
const index_t StrideA,
const index_t StrideB,
const std::array<index_t, NumDTensor> StrideDs,
const index_t StrideE,
const index_t KBatch,
const Block2ETileMap& block_2_etile_map)
{
const auto p_a_grid = reinterpret_cast<const ABDataType*>(p_a_grid_);
const auto p_b_grid = reinterpret_cast<const ABDataType*>(p_b_grid_);
const auto p_e_grid = reinterpret_cast<EDataType*>(p_e_grid_);
using DsGridDesc_M_N =
remove_cvref_t<decltype(MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>({}, {}, {}))>;
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
ds_grid_desc_m_n(j) = MakeEGridDescriptor_M_N<DLayout, GemmSpec>(M, N, StrideDs[j]);
});
const auto e_grid_desc_m_n = MakeEGridDescriptor_M_N<ELayout, GemmSpec>(M, N, StrideE);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_kbatch_ak0_m_ak1 =
MakeAGridDescriptor_KBatch_AK0_M_AK1<ALayout, GemmSpec>(M, K, StrideA, KBatch);
const auto b_grid_desc_kbatch_bk0_n_bk1 =
MakeBGridDescriptor_KBatch_BK0_N_BK1<BLayout, GemmSpec>(K, N, StrideB, KBatch);
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock ds_grid_desc_mblock_mperblock_nblock_nperblock;
static_for<0, NumDTensor, 1>{}([&](auto j) {
ds_grid_desc_mblock_mperblock_nblock_nperblock(j) =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(ds_grid_desc_m_n[j]);
});
const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(e_grid_desc_m_n);
const auto block_work_idx =
block_2_etile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t kbatch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
if(kbatch_id == KBatch - 1)
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, NumDTensor, DsDataType>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
else
{
Run<HasMainKBlockLoop, EGlobalMemoryDataOperation, 0, Tuple<>>(
p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
barrier_count_finished,
KBatch,
a_element_op,
b_element_op,
ck::tensor_operation::element_wise::PassThrough{},
a_grid_desc_kbatch_ak0_m_ak1,
b_grid_desc_kbatch_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
}
}
};
} // namespace ck
...@@ -101,6 +101,7 @@ using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd; ...@@ -101,6 +101,7 @@ using MultiplyAdd = ck::tensor_operation::element_wise::MultiplyAdd;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd; using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using Gelu = ck::tensor_operation::element_wise::Gelu; using Gelu = ck::tensor_operation::element_wise::Gelu;
using Swish = ck::tensor_operation::element_wise::Swish; using Swish = ck::tensor_operation::element_wise::Swish;
using Add = ck::tensor_operation::element_wise::Add;
template <typename Activation> template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>; using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// fp16_output
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>& instances);
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F16,
PassThrough,
PassThrough,
Add>>>& instances);
// fp32_output
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Add>>>& instances);
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
Row_Tuple,
Row,
F16,
F16,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Add>>>& instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
Row_Tuple,
ELayout,
ADataType,
BDataType,
F32_Tuple,
EDataType,
PassThrough,
PassThrough,
Add>>
{
using DeviceOp = DeviceGroupedGemmFixedNK<ALayout,
BLayout,
Row_Tuple,
ELayout,
ADataType,
BDataType,
F32_Tuple,
EDataType,
PassThrough,
PassThrough,
Add>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
// fp16_output
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
}
// fp32_output
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, float>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instances(op_ptrs);
}
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -26,7 +26,9 @@ struct DeviceMem ...@@ -26,7 +26,9 @@ struct DeviceMem
void* GetDeviceBuffer() const; void* GetDeviceBuffer() const;
std::size_t GetBufferSize() const; std::size_t GetBufferSize() const;
void ToDevice(const void* p) const; void ToDevice(const void* p) const;
void ToDevice(const void* p, const std::size_t cpySize) const;
void FromDevice(void* p) const; void FromDevice(void* p) const;
void FromDevice(void* p, const std::size_t cpySize) const;
void SetZero() const; void SetZero() const;
template <typename T> template <typename T>
void SetValue(T x) const; void SetValue(T x) const;
......
...@@ -83,7 +83,6 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc ...@@ -83,7 +83,6 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>, DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>,
DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2> DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 16, 1, 4>, 8, PipelineVersion::v2>
// clang-format on // clang-format on
// clang-format on
>; >;
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances( void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances(
......
add_instance_library(device_grouped_gemm_bias_instance
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16,16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
DsLayout,
Row,
F16,
F16,
DsDataType,
F16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 8, 32, 32, 2, 4, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 128, 64, 8, 8, 32, 32, 4, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 256, 64, 8, 8, 32, 32, 1, 4, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 64, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F16, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
DsLayout,
Row,
F16,
F16,
DsDataType,
F16,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f16_mk_nk_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16,16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 1, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S< 1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 32, 128, 32, 8, 8, 32, 32, 1, 1, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 32, 256, 32, 8, 8, 32, 32, 1, 2, S< 1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Row, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 16, 128, 32, 8, 8, 16, 16, 1, 4, S< 1, 4, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Row,
DsLayout,
Row,
F16,
F16,
DsDataType,
F32,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_kn_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using D0DataType = F32;
using DsDataType = ck::Tuple<D0DataType>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 256, 64, 8, 8, 32, 32, 2, 4, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 128, 64, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 64, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 256, 32, 128, 64, 8, 8, 32, 32, 1, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 128, 64, 8, 8, 32, 32, 4, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 64, 128, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 128, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 128, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 128, 32, 256, 64, 8, 8, 32, 32, 1, 4, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 64, 64, 64, 8, 8, 32, 32, 2, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 64, 32, 64, 8, 8, 32, 32, 2, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceGroupedGemm_Xdl_Fixed_NK< Row, Col, DsLayout, Row, F16, F16, F32, F32, DsDataType, F32, PassThrough, PassThrough, Add, GemmMNKPadding, 1, 64, 32, 64, 64, 8, 8, 32, 32, 1, 2, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 8, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
void add_device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemmFixedNK<Row,
Col,
DsLayout,
Row,
F16,
F16,
DsDataType,
F32,
PassThrough,
PassThrough,
Add>>>& instances)
{
add_device_operation_instances(
instances,
device_grouped_gemm_xdl_fixed_nk_bias_f16_f16_f32_mk_nk_mn_irregular_tile_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment