Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
f4ebc5ac
"vscode:/vscode.git/clone" did not exist on "d7e300bd65a05457aa755c59de6c0ba3faf8d672"
Unverified
Commit
f4ebc5ac
authored
Jun 21, 2023
by
Rostyslav Geyyer
Committed by
GitHub
Jun 21, 2023
Browse files
Merge branch 'develop' into lwpck-739
parents
8773bb76
3b18f1e3
Changes
25
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
871 additions
and
99 deletions
+871
-99
Jenkinsfile
Jenkinsfile
+1
-1
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+2
-6
example/41_grouped_conv_conv_fwd/CMakeLists.txt
example/41_grouped_conv_conv_fwd/CMakeLists.txt
+2
-6
include/ck/ck.hpp
include/ck/ck.hpp
+4
-0
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+0
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+1
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+6
-9
include/ck/tensor_operation/operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
...operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
+61
-5
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
...ration_instance/gpu/grouped_convolution_backward_data.hpp
+99
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/CMakeLists.txt
...ation_instance/gpu/grouped_conv2d_bwd_data/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
...d_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
...ed_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
+17
-69
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
...ed_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_instance.hpp
..._bwd_data/device_grouped_conv2d_bwd_data_xdl_instance.hpp
+141
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
...d_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
...ed_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
...ed_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
+47
-0
profiler/README.md
profiler/README.md
+38
-0
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
...r/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
+257
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
No files found.
Jenkinsfile
View file @
f4ebc5ac
...
@@ -696,7 +696,7 @@ pipeline {
...
@@ -696,7 +696,7 @@ pipeline {
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940
;gfx941;gfx942
" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
}
steps
{
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
...
...
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
f4ebc5ac
...
@@ -14,10 +14,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -14,10 +14,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
endif
()
endif
()
endforeach
()
endforeach
()
set
(
target 0
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
\ No newline at end of file
example/41_grouped_conv_conv_fwd/CMakeLists.txt
View file @
f4ebc5ac
...
@@ -13,10 +13,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -13,10 +13,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
endif
()
endif
()
endforeach
()
endforeach
()
set
(
target 0
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
include/ck/ck.hpp
View file @
f4ebc5ac
...
@@ -173,6 +173,10 @@
...
@@ -173,6 +173,10 @@
// workaround: compiler issue on gfx908
// workaround: compiler issue on gfx908
#define CK_WORKAROUND_SWDEV_388832 1
#define CK_WORKAROUND_SWDEV_388832 1
// workaround: Grouped Conv2d_bwd_data fails for already implemented instance
#define CK_WORKAROUND_SWDEV_3318619 0
// flag to enable (1) or disable (0) the debugging output in some kernels
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
#define DEBUG_LOG 0
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
View file @
f4ebc5ac
...
@@ -786,12 +786,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
...
@@ -786,12 +786,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
==
1
&&
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
==
1
&&
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
0
]
%
D0sTransferSrcScalarPerVector
!=
0
)
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
0
]
%
D0sTransferSrcScalarPerVector
!=
0
)
{
{
std
::
cout
<<
"first"
<<
std
::
endl
;
return
false
;
return
false
;
}
}
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
!=
1
&&
D0sTransferSrcScalarPerVector
!=
1
)
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
!=
1
&&
D0sTransferSrcScalarPerVector
!=
1
)
{
{
std
::
cout
<<
"second"
<<
std
::
endl
;
return
false
;
return
false
;
}
}
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
f4ebc5ac
...
@@ -76,7 +76,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -76,7 +76,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
// TODO: should be exposed as Tparams.
// TODO: should be exposed as Tparams.
static
constexpr
index_t
NumGemmKPrefetchStage
=
1
;
static
constexpr
index_t
NumGemmKPrefetchStage
=
1
;
static
constexpr
LoopScheduler
LoopSched
=
make_default_loop_scheduler
();
static
constexpr
LoopScheduler
LoopSched
=
make_default_loop_scheduler
();
static
constexpr
PipelineVersion
PipelineVer
=
PipelineVersion
::
v
2
;
static
constexpr
PipelineVersion
PipelineVer
=
PipelineVersion
::
v
1
;
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
BlockSize
,
BlockSize
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
f4ebc5ac
...
@@ -459,7 +459,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -459,7 +459,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
p_ds_grid_
{},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_k_wos_lengths
[
0
]},
num_group_
{
a_g_n_k_wos_lengths
[
0
]},
num_gemm_
{},
a_element_op_
{
a_element_op
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
cde_element_op_
{
cde_element_op
},
...
@@ -508,9 +507,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -508,9 +507,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
// number of GEMM
num_gemm_
=
YTilde
*
XTilde
;
for
(
index_t
i_ytilde
=
0
;
i_ytilde
<
YTilde
;
++
i_ytilde
)
for
(
index_t
i_ytilde
=
0
;
i_ytilde
<
YTilde
;
++
i_ytilde
)
{
{
for
(
index_t
i_xtilde
=
0
;
i_xtilde
<
XTilde
;
++
i_xtilde
)
for
(
index_t
i_xtilde
=
0
;
i_xtilde
<
XTilde
;
++
i_xtilde
)
...
@@ -626,7 +622,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -626,7 +622,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
void
Print
()
const
void
Print
()
const
{
{
for
(
index
_t
i
=
0
;
i
<
num_gemm_
;
i
++
)
for
(
std
::
size
_t
i
=
0
;
i
<
a_grid_desc_ak0_m_ak1_container_
.
size
()
;
i
++
)
{
{
std
::
cout
<<
"a_grid_desc_ak0_m_ak1_container_"
std
::
cout
<<
"a_grid_desc_ak0_m_ak1_container_"
<<
a_grid_desc_ak0_m_ak1_container_
[
i
]
<<
std
::
endl
;
<<
a_grid_desc_ak0_m_ak1_container_
[
i
]
<<
std
::
endl
;
...
@@ -654,7 +650,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -654,7 +650,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// tensor descriptor for problem definition
// tensor descriptor for problem definition
index_t
num_group_
;
index_t
num_group_
;
index_t
num_gemm_
;
std
::
vector
<
AGridDesc_M_K
>
a_grid_desc_m_k_container_
;
std
::
vector
<
AGridDesc_M_K
>
a_grid_desc_m_k_container_
;
std
::
vector
<
BGridDesc_N_K
>
b_grid_desc_n_k_container_
;
std
::
vector
<
BGridDesc_N_K
>
b_grid_desc_n_k_container_
;
std
::
vector
<
DsGridDesc_M_N
>
ds_grid_desc_m_n_container_
;
std
::
vector
<
DsGridDesc_M_N
>
ds_grid_desc_m_n_container_
;
...
@@ -708,7 +703,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -708,7 +703,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
float
ave_time
=
0
;
float
ave_time
=
0
;
for
(
index
_t
i
=
0
;
i
<
arg
.
num_gemm_
;
i
++
)
for
(
std
::
size
_t
i
=
0
;
i
<
arg
.
a_grid_desc_ak0_m_ak1_container_
.
size
()
;
i
++
)
{
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_container_
[
i
],
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_container_
[
i
],
arg
.
b_grid_desc_n_k_container_
[
i
],
arg
.
b_grid_desc_n_k_container_
[
i
],
...
@@ -807,7 +802,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -807,7 +802,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
}
// vector load for A matrix from global memory to LDS
// vector load for A matrix from global memory to LDS
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
)
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
)
{
{
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
ConvK
%
ABlockTransferSrcScalarPerVector
==
0
))
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
ConvK
%
ABlockTransferSrcScalarPerVector
==
0
))
{
{
...
@@ -862,7 +858,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -862,7 +858,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
}
// vector store for E
// vector store for E
if
constexpr
(
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
GNHWC
>
)
if
constexpr
(
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
GNHWC
>
||
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
NHWGC
>
)
{
{
// vector store C matrix into global memory
// vector store C matrix into global memory
if
(
!
(
ConvC
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
if
(
!
(
ConvC
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
...
...
include/ck/tensor_operation/operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
View file @
f4ebc5ac
...
@@ -13,6 +13,61 @@
...
@@ -13,6 +13,61 @@
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
{
template
<
index_t
NDimSpatial
,
typename
ALayout
,
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
ConvBwdDataSpecialization
>
constexpr
auto
make_out_n_ho_wo_k_grid_desc
(
const
index_t
N
,
const
index_t
Ho
,
const
index_t
Wo
,
const
index_t
K
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_strides
)
{
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
)
{
const
index_t
NStride
=
out_g_n_k_wos_strides
[
1
];
const
index_t
HiStride
=
out_g_n_k_wos_strides
[
3
];
const
index_t
WiStride
=
out_g_n_k_wos_strides
[
4
];
const
auto
CStride
=
Number
<
1
>
{};
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Ho
*
Wo
,
K
),
make_tuple
(
WiStride
,
CStride
));
}
else
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Ho
,
Wo
,
K
),
make_tuple
(
NStride
,
HiStride
,
WiStride
,
CStride
));
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
)
{
// assume packed
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
}
else
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Ho
,
Wo
,
K
));
}
}
else
{
throw
std
::
runtime_error
(
"wrong! unsupported layout: "
+
ALayout
::
name
());
}
}
}
// namespace
template
<
template
<
index_t
NDimSpatial
,
index_t
NDimSpatial
,
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
ConvBwdDataSpecialization
,
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
ConvBwdDataSpecialization
,
...
@@ -29,11 +84,12 @@ struct TransformConvBwdDataToGemm_v1
...
@@ -29,11 +84,12 @@ struct TransformConvBwdDataToGemm_v1
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>,
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
),
bool
>::
type
=
false
>
bool
>::
type
=
false
>
static
auto
MakeADescriptor_AK0_M_AK1
(
static
auto
MakeADescriptor_AK0_M_AK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/*
out_g_n_k_wos_strides
*/
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
wei_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
wei_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* wei_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* wei_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
in_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
in_g_n_c_wis_lengths
,
...
@@ -70,9 +126,9 @@ struct TransformConvBwdDataToGemm_v1
...
@@ -70,9 +126,9 @@ struct TransformConvBwdDataToGemm_v1
const
index_t
AK0
=
K
/
AK1
;
const
index_t
AK0
=
K
/
AK1
;
// assume packed
const
auto
out_n_ho_wo_k_grid_desc
=
const
auto
out_n_ho_wo_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Ho
,
Wo
,
K
));
make_out_n_ho_wo_k_grid_desc
<
NDimSpatial
,
ALayout
,
ConvBwdDataSpecialization
>
(
N
,
Ho
,
Wo
,
K
,
out_g_n_k_wos_strides
);
if
constexpr
(
ConvBwdDataSpecialization
==
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
...
@@ -80,7 +136,7 @@ struct TransformConvBwdDataToGemm_v1
...
@@ -80,7 +136,7 @@ struct TransformConvBwdDataToGemm_v1
{
{
// A: output tensor
// A: output tensor
const
auto
out_gemmak0_gemmmraw_gemmak1_grid_desc
=
transform_tensor_descriptor
(
const
auto
out_gemmak0_gemmmraw_gemmak1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
))
,
out_n_ho_wo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
))),
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
View file @
f4ebc5ac
...
@@ -30,6 +30,76 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
...
@@ -30,6 +30,76 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
template
<
ck
::
index_t
NumDimSpatial
,
typename
OutLayout
,
typename
OutLayout
,
typename
WeiLayout
,
typename
WeiLayout
,
...
@@ -78,6 +148,35 @@ struct DeviceOperationInstanceFactory<
...
@@ -78,6 +148,35 @@ struct DeviceOperationInstanceFactory<
{
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
NHWGC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
}
}
}
return
op_ptrs
;
return
op_ptrs
;
...
...
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/CMakeLists.txt
View file @
f4ebc5ac
add_instance_library
(
device_grouped_conv2d_bwd_data_instance
add_instance_library
(
device_grouped_conv2d_bwd_data_instance
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
)
)
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
0 → 100644
View file @
f4ebc5ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
View file @
f4ebc5ac
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
0 → 100644
View file @
f4ebc5ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_instance.hpp
0 → 100644
View file @
f4ebc5ac
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
0 → 100644
View file @
f4ebc5ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
0 → 100644
View file @
f4ebc5ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
0 → 100644
View file @
f4ebc5ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/README.md
View file @
f4ebc5ac
...
@@ -102,4 +102,42 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
...
@@ -102,4 +102,42 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_
{
4096, 4096
}
arg.e_grid_desc_m_n_
{
4096, 4096
}
....
....
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
## Profile grouped convolution backward data kernels
```
bash
# arg1: tensor operation (grouped_conv_bwd_data: Grouped Convolution Backward Data)
# arg2: data type (0: Output fp32, Weight fp32, Input fp32
# 1: Output fp16, Weight fp16, Input fp16
# 2: Output bf16, Weight bf16, Input bf16
# arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
# 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler grouped_conv_bwd_data 1 0 1 1 0 1 2 32 4 192 192 3 3 28 28 1 1 1 1 1 1 1 1
```
Result (MI100, FP16, GNHWC_GKYXC_GNHWK)
```
out: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
wei: dim 5, lengths {32, 192, 192, 3, 3}, strides {331776, 1728, 1, 576, 192}
in: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
....
Best configuration parameters:
name: DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
256,
128,
256,
32,
8,
2,
Default
,
32,
32,
2,
4,
8,
4,
1,
1
>
avg_time: 0.768321
tflops: 86.6679
GB/s: 127.947
```
```
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
0 → 100644
View file @
f4ebc5ac
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
namespace
ck
{
namespace
profiler
{
template
<
ck
::
index_t
NDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
typename
InLayout
,
typename
OutDataType
,
typename
WeiDataType
,
typename
InDataType
>
bool
profile_grouped_conv_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
out_element_op
=
OutElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
in_element_op
=
InElementOp
{};
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
InDataType
>
in_host
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_device
(
in_g_n_c_wis_desc
);
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in: "
<<
in_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
case
2
:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
in_host
.
SetZero
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_host
,
wei
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
out_element_op
,
wei_element_op
,
in_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
bool
pass
=
true
;
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
in_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
in_device_buf
.
FromDevice
(
in_device
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
in_device
,
in_host
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
out
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
wei
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_host : "
,
in_host
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_device: "
,
in_device
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
// do GEMM
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
OutElementOp
,
WeiElementOp
,
InElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
out_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
out_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
wei_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
wei_strides
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
in_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
in_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
out_element_op
,
wei_element_op
,
in_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
f4ebc5ac
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCES
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCES
profile_contraction_bilinear.cpp
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_contraction_scale.cpp
profile_batched_gemm_multi_d.cpp
profile_batched_gemm_multi_d.cpp
profile_grouped_conv_bwd_data.cpp
)
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
@@ -79,4 +80,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear
...
@@ -79,4 +80,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment