Unverified Commit f4ebc5ac authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-739

parents 8773bb76 3b18f1e3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace {
enum struct ConvLayout
{
GNHWC_GKYXC_GNHWK, // 0
NHWGC_GKYXC_NHWGK, // 1
};
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
};
#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"
static void print_helper_msg()
{
std::cout
// clang-format off
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Output fp32, Weight fp32, Input fp32\n"
<< " 1: Output fp16, Weight fp16, Input fp16\n"
<< " 2: Output bf16, Weight bf16, Input bf16\n"
<< "arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]\n"
<< " 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
// clang-format on
}
} // namespace
int profile_grouped_conv_bwd_data(int argc, char* argv[])
{
// 8 for control, 1 for num_dim_spatial
if(argc < 9)
{
print_helper_msg();
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto layout = static_cast<ConvLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int num_dim_spatial = std::stoi(argv[8]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
{
print_helper_msg();
return 1;
}
const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
constexpr auto I2 = ck::Number<2>{};
auto profile = [&](auto num_dim_spatial_tmp,
auto out_layout,
auto wei_layout,
auto in_layout,
auto wei_type,
auto out_type,
auto in_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using OutLayout = decltype(out_layout);
using WeiLayout = decltype(wei_layout);
using InLayout = decltype(in_layout);
using OutDataType = decltype(out_type);
using WeiDataType = decltype(wei_type);
using InDataType = decltype(in_type);
bool pass = ck::profiler::profile_grouped_conv_bwd_data_impl<NDimSpatial,
OutLayout,
WeiLayout,
InLayout,
OutDataType,
WeiDataType,
InDataType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
};
// GNHWC_GKYXC_GNHWK
if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, BF16{}, BF16{}, BF16{});
}
}
// NHWGC_GKYXC_NHWGK
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
{
return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, BF16{}, BF16{}, BF16{});
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_bwd_data);
...@@ -59,6 +59,7 @@ add_subdirectory(batchnorm) ...@@ -59,6 +59,7 @@ add_subdirectory(batchnorm)
add_subdirectory(contraction) add_subdirectory(contraction)
add_subdirectory(pool_fwd) add_subdirectory(pool_fwd)
add_subdirectory(batched_gemm_multi_d) add_subdirectory(batched_gemm_multi_d)
add_subdirectory(grouped_convnd_bwd_data)
if(GPU_TARGETS MATCHES "gfx1100") if(GPU_TARGETS MATCHES "gfx1100")
add_subdirectory(wmma_op) add_subdirectory(wmma_op)
endif() endif()
if(GPU_TARGETS MATCHES "gfx908" OR GPU_TARGETS MATCHES "gfx90a" OR GPU_TARGETS MATCHES "gfx940")
add_gtest_executable(test_grouped_convnd_bwd_data test_grouped_convnd_bwd_data.cpp)
target_link_libraries(test_grouped_convnd_bwd_data PRIVATE utility device_grouped_conv2d_bwd_data_instance)
add_gtest_executable(test_grouped_convnd_bwd_data_interface test_grouped_convnd_bwd_data_interface.cpp)
target_link_libraries(test_grouped_convnd_bwd_data_interface PRIVATE utility device_grouped_conv2d_bwd_data_instance)
endif()
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
template <typename Tuple>
class TestGroupedConvndBwdData : public ::testing::Test
{
protected:
using DataType = std::tuple_element_t<0, Tuple>;
using OutLayout = std::tuple_element_t<1, Tuple>;
using WeiLayout = std::tuple_element_t<2, Tuple>;
using InLayout = std::tuple_element_t<3, Tuple>;
std::vector<ck::utils::conv::ConvParam> conv_params;
template <ck::index_t NDimSpatial>
void Run()
{
EXPECT_FALSE(conv_params.empty());
bool pass = true;
for(auto& param : conv_params)
{
pass = pass && ck::profiler::profile_grouped_conv_bwd_data_impl<NDimSpatial,
OutLayout,
WeiLayout,
InLayout,
DataType,
DataType,
DataType>(
true, // do_verification
1, // init_method: integer value
false, // do_log
false, // time_kernel
param);
}
EXPECT_TRUE(pass);
}
};
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using KernelTypes = ::testing::Types<std::tuple<float, GNHWK, GKYXC, GNHWC>,
std::tuple<ck::half_t, GNHWK, GKYXC, GNHWC>,
std::tuple<ck::bhalf_t, GNHWK, GKYXC, GNHWC>,
std::tuple<float, NHWGK, GKYXC, NHWGC>,
std::tuple<ck::half_t, NHWGK, GKYXC, NHWGC>,
std::tuple<ck::bhalf_t, NHWGK, GKYXC, NHWGC>>;
TYPED_TEST_SUITE(TestGroupedConvndBwdData, KernelTypes);
TYPED_TEST(TestGroupedConvndBwdData, Test2D)
{
this->conv_params.clear();
this->conv_params.push_back(
{2, 2, 4, 192, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back(
{2, 2, 128, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back(
{2, 2, 128, 128, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
this->conv_params.push_back(
{2, 2, 128, 128, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
this->template Run<2>();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include <gtest/gtest.h>
using DataType = ck::half_t;
using AccDataType = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ConvBackwardDataSpecialization =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization;
static constexpr auto ConvBwdDataDefault = ConvBackwardDataSpecialization::Default;
static constexpr auto Filter1x1Stride1Pad0 = ConvBackwardDataSpecialization::Filter1x1Stride1Pad0;
template <typename Tuple, ConvBackwardDataSpecialization ConvSpec>
class TestGroupedConvndBwdData : public ::testing::Test
{
protected:
static constexpr ck::index_t NDimSpatial = 2;
using OutLayout = std::tuple_element_t<0, Tuple>;
using WeiLayout = std::tuple_element_t<1, Tuple>;
using InLayout = std::tuple_element_t<2, Tuple>;
// clang-format off
using GroupedConvBwdDataDeviceInstance = ck::tensor_operation::device::DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// ######| NDimSpatial| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ######| | | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< NDimSpatial, OutLayout, WeiLayout, ck::Tuple<>, InLayout, DataType, DataType, AccDataType, DataType, ck::Tuple<>, DataType, Pass, Pass, Pass, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
ck::utils::conv::ConvParam conv_param;
template <ck::index_t NDimSpatial>
bool Run()
{
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
std::array<ck::index_t, NDimSpatial + 3> out_lengths{};
std::array<ck::index_t, NDimSpatial + 3> out_strides{};
std::array<ck::index_t, NDimSpatial + 3> wei_lengths{};
std::array<ck::index_t, NDimSpatial + 3> wei_strides{};
std::array<ck::index_t, NDimSpatial + 3> in_lengths{};
std::array<ck::index_t, NDimSpatial + 3> in_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(out_g_n_k_wos_desc.GetLengths(), out_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), out_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), wei_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), wei_strides);
copy(in_g_n_c_wis_desc.GetLengths(), in_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), in_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
auto conv = GroupedConvBwdDataDeviceInstance{};
auto argument = conv.MakeArgument(nullptr,
nullptr,
std::array<const void*, 0>{},
nullptr,
out_lengths,
out_strides,
wei_lengths,
wei_strides,
{},
{},
in_lengths,
in_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
Pass{},
Pass{},
Pass{});
return conv.IsSupportedArgument(argument);
}
};
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using KernelTypes =
::testing::Types<std::tuple<GNHWK, GKYXC, GNHWC>, std::tuple<NHWGK, GKYXC, NHWGC>>;
template <typename Tuple>
class TestGroupedConvndBwdDataDefault : public TestGroupedConvndBwdData<Tuple, ConvBwdDataDefault>
{
};
template <typename Tuple>
class TestGroupedConvndBwdDataFilter1x1
: public TestGroupedConvndBwdData<Tuple, Filter1x1Stride1Pad0>
{
};
TYPED_TEST_SUITE(TestGroupedConvndBwdDataDefault, KernelTypes);
TYPED_TEST_SUITE(TestGroupedConvndBwdDataFilter1x1, KernelTypes);
TYPED_TEST(TestGroupedConvndBwdDataFilter1x1, SpecializationCheck)
{
// Check filter 3,3 instead of 1,1
this->conv_param = {2, 2, 4, 192, 192, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
bool is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// Check strides 2,2 instead of 1,1
this->conv_param = {2, 2, 4, 192, 192, {1, 1}, {28, 28}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// Check with pad
this->conv_param = {2, 2, 4, 192, 192, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {1, 1}, {1, 1}};
is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// Supported version
this->conv_param = {2, 2, 4, 192, 192, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
is_supported = this->template Run<2>();
EXPECT_TRUE(is_supported);
}
TYPED_TEST(TestGroupedConvndBwdDataDefault, VectorLoadCheck)
{
// vector load for A
this->conv_param = {2, 2, 128, 129, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
bool is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
// vector load for B, E, Ds
this->conv_param = {2, 2, 128, 128, 257, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
is_supported = this->template Run<2>();
EXPECT_FALSE(is_supported);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment