Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
f30e5975
"...composable_kernel.git" did not exist on "e823d518cb46ad61ddb3c70eac8529e0a58af1f8"
Commit
f30e5975
authored
Oct 24, 2023
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
91b414cd
bec84efb
Changes
207
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
311 additions
and
242 deletions
+311
-242
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
..._weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
+20
-1
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+1
-21
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
...yernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
+4
-1
example/22_cgemm/CMakeLists.txt
example/22_cgemm/CMakeLists.txt
+10
-14
example/24_batched_gemm/CMakeLists.txt
example/24_batched_gemm/CMakeLists.txt
+11
-16
example/27_layernorm/layernorm_fp16.cpp
example/27_layernorm/layernorm_fp16.cpp
+12
-7
example/27_layernorm/layernorm_splitk_fp16.cpp
example/27_layernorm/layernorm_splitk_fp16.cpp
+12
-7
example/27_layernorm/run_layernorm_example.inc
example/27_layernorm/run_layernorm_example.inc
+54
-28
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+30
-36
example/30_grouped_conv_fwd_multiple_d/README.md
example/30_grouped_conv_fwd_multiple_d/README.md
+1
-1
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+13
-21
example/35_splitK_gemm/CMakeLists.txt
example/35_splitK_gemm/CMakeLists.txt
+15
-20
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
+19
-20
example/39_permute/CMakeLists.txt
example/39_permute/CMakeLists.txt
+5
-9
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
+11
-6
example/42_groupnorm/groupnorm_splitk_fp16.cpp
example/42_groupnorm/groupnorm_splitk_fp16.cpp
+12
-7
example/42_groupnorm/groupnorm_swish_fp16.cpp
example/42_groupnorm/groupnorm_swish_fp16.cpp
+12
-7
example/42_groupnorm/run_groupnorm_example.inc
example/42_groupnorm/run_groupnorm_example.inc
+44
-9
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
...entwise_normalization/elementwise_layernorm_blockwise.cpp
+14
-3
example/52_im2col_col2im/CMakeLists.txt
example/52_im2col_col2im/CMakeLists.txt
+11
-8
No files found.
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
View file @
f30e5975
...
@@ -83,4 +83,23 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
...
@@ -83,4 +83,23 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
#include "run_grouped_conv_bwd_weight_example.inc"
#include "run_grouped_conv_bwd_weight_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_bwd_weight_example
(
argc
,
argv
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
1
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
!
run_grouped_conv_bwd_weight
<
1
>
(
config
,
conv_param
);
case
2
:
return
!
run_grouped_conv_bwd_weight
<
2
>
(
config
,
conv_param
);
case
3
:
return
!
run_grouped_conv_bwd_weight
<
3
>
(
config
,
conv_param
);
default:
break
;
}
return
1
;
}
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
f30e5975
...
@@ -5,7 +5,7 @@ template <ck::index_t NDimSpatial>
...
@@ -5,7 +5,7 @@ template <ck::index_t NDimSpatial>
bool
run_grouped_conv_bwd_weight
(
const
ExecutionConfig
&
config
,
bool
run_grouped_conv_bwd_weight
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
{
// Dl op do
es
n't support split_k > 1
// Dl
and WMMA
op
s
don't support split_k > 1
constexpr
ck
::
index_t
split_k
=
1
;
constexpr
ck
::
index_t
split_k
=
1
;
const
auto
in_g_n_c_wis_desc
=
const
auto
in_g_n_c_wis_desc
=
...
@@ -143,23 +143,3 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
...
@@ -143,23 +143,3 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
return
true
;
return
true
;
}
}
bool
run_grouped_conv_bwd_weight_example
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
false
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_bwd_weight
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_bwd_weight
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_bwd_weight
<
3
>
(
config
,
conv_param
);
}
return
false
;
}
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
View file @
f30e5975
...
@@ -114,12 +114,15 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
...
@@ -114,12 +114,15 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
BetaDataType
,
BetaDataType
,
HDataType
,
HDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
HElementOp
,
HElementOp
,
2
,
2
,
1
>
;
1
>
;
Tensor
<
EMeanVarDataType
>
e_m_n
(
HostTensorDescriptor
{
M
,
N
});
Tensor
<
EMeanVarDataType
>
e_m_n
(
HostTensorDescriptor
{
M
,
N
});
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
Tensor
<
AccDataType
>
save_mean
({
M
});
Tensor
<
AccDataType
>
save_inv_std
({
M
});
auto
ref_gemm
=
ReferenceGemm
{};
auto
ref_gemm
=
ReferenceGemm
{};
auto
ref_gemm_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_gemm_invoker
=
ref_gemm
.
MakeInvoker
();
...
@@ -145,7 +148,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
...
@@ -145,7 +148,7 @@ void host_gemm_layernorm(Tensor<HDataType>& h_m_n,
auto
ref_layernorm_invoker
=
ref_layernorm
.
MakeInvoker
();
auto
ref_layernorm_invoker
=
ref_layernorm
.
MakeInvoker
();
auto
ref_layernorm_argument
=
ref_layernorm
.
MakeArgument
(
auto
ref_layernorm_argument
=
ref_layernorm
.
MakeArgument
(
e_m_n
,
gamma_n
,
beta_n
,
h_m_n
,
h_element_op
,
{
M
,
N
},
{
1
},
epsilon
);
e_m_n
,
gamma_n
,
beta_n
,
h_m_n
,
save_mean
,
save_inv_std
,
h_element_op
,
{
M
,
N
},
{
1
},
epsilon
);
ref_layernorm_invoker
.
Run
(
ref_layernorm_argument
);
ref_layernorm_invoker
.
Run
(
ref_layernorm_argument
);
}
}
...
...
example/22_cgemm/CMakeLists.txt
View file @
f30e5975
add_custom_target
(
example_cgemm_xdl
)
add_custom_target
(
example_cgemm_xdl
)
add_example_executable
(
example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp
)
add_example_executable
(
example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_cgemm_xdl example_cgemm_xdl_bf16
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_bf16
)
endif
()
add_example_executable
(
example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp
)
add_example_executable
(
example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp16
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp16
)
endif
()
add_example_executable
(
example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp
)
add_example_executable
(
example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp32
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp32
)
endif
()
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int8
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_cgemm_xdl_int4 cgemm_xdl_int4.cpp
)
add_example_executable
(
example_cgemm_xdl_int4 cgemm_xdl_int4.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int4
)
add_
example_
dependencies
(
example_cgemm_xdl example_cgemm_xdl_int4
)
endif
()
endif
()
example/24_batched_gemm/CMakeLists.txt
View file @
f30e5975
add_custom_target
(
example_batched_gemm_xdl
)
add_custom_target
(
example_batched_gemm_xdl
)
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp32
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp32
)
endif
()
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp16
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_fp16
)
endif
()
add_example_executable
(
example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_bf16
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_bf16
)
endif
()
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int8
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
add_example_executable
(
example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
add_dependencies
(
example_batched_gemm_xdl example_batched_gemm_xdl_int4
)
endif
()
endif
()
endif
()
example/27_layernorm/layernorm_fp16.cpp
View file @
f30e5975
...
@@ -3,12 +3,15 @@
...
@@ -3,12 +3,15 @@
#include "common.hpp"
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
SaveMeanInvStdDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
constexpr
int
NumReduceDim
=
1
;
...
@@ -19,6 +22,7 @@ using DeviceInstance =
...
@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType
,
BetaDataType
,
ComputeDataType
,
ComputeDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
PassThrough
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
...
@@ -33,7 +37,8 @@ using DeviceInstance =
...
@@ -33,7 +37,8 @@ using DeviceInstance =
8
,
// GammaScalarPerVector
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// BetaScalarPerVector
8
>
;
// OutScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
#include "run_layernorm_example.inc"
int
main
()
{
return
run_groupnorm_example
<
DeviceInstance
>
();
}
int
main
()
{
return
run_groupnorm_example
<
DeviceInstance
>
();
}
example/27_layernorm/layernorm_splitk_fp16.cpp
View file @
f30e5975
...
@@ -3,12 +3,15 @@
...
@@ -3,12 +3,15 @@
#include "common.hpp"
#include "common.hpp"
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
SaveMeanInvStdDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ComputeDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
#define SAVE_MEAN_INV_STD
constexpr
int
Rank
=
2
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
constexpr
int
NumReduceDim
=
1
;
...
@@ -19,6 +22,7 @@ using DeviceInstance =
...
@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType
,
BetaDataType
,
ComputeDataType
,
ComputeDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
PassThrough
,
PassThrough
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
...
@@ -33,7 +37,8 @@ using DeviceInstance =
...
@@ -33,7 +37,8 @@ using DeviceInstance =
8
,
// GammaScalarPerVector
8
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
1
,
// BetaVecDim (0=M, 1=K)
8
,
// BetaScalarPerVector
8
,
// BetaScalarPerVector
8
>
;
// YScalarPerVector
8
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_layernorm_example.inc"
#include "run_layernorm_example.inc"
...
...
example/27_layernorm/run_layernorm_example.inc
View file @
f30e5975
...
@@ -10,22 +10,13 @@ int run_groupnorm_example()
...
@@ -10,22 +10,13 @@ int run_groupnorm_example()
ck
::
index_t
M
=
1024
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
N
;
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
Tensor
<
XDataType
>
x
({
M
,
N
});
return
HostTensorDescriptor
({
len
},
{
stride
});
Tensor
<
GammaDataType
>
gamma
({
N
});
};
Tensor
<
BetaDataType
>
beta
({
N
});
Tensor
<
YDataType
>
y
({
M
,
N
});
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
)
{
Tensor
<
SaveMeanInvStdDataType
>
save_mean
({
M
});
using
namespace
ck
::
literals
;
Tensor
<
SaveMeanInvStdDataType
>
save_inv_std
({
M
});
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
};
Tensor
<
XDataType
>
x
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
GammaDataType
>
gamma
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
YDataType
>
y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
0.0
,
1.0
});
...
@@ -35,6 +26,11 @@ int run_groupnorm_example()
...
@@ -35,6 +26,11 @@ int run_groupnorm_example()
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
#ifdef SAVE_MEAN_INV_STD
DeviceMem
save_mean_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
save_inv_std_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_inv_std
.
mDesc
.
GetElementSpaceSize
());
#endif
x_dev
.
ToDevice
(
x
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
...
@@ -47,14 +43,23 @@ int run_groupnorm_example()
...
@@ -47,14 +43,23 @@ int run_groupnorm_example()
{
0
,
1
},
{
0
,
1
},
{
0
,
1
},
{
0
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
{
1
},
{
1
},
1
e
-
4
,
1
e
-
4
,
x_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
GetDeviceBuffer
(),
save_inv_std_dev
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
nullptr
,
nullptr
,
#endif
PassThrough
{});
PassThrough
{});
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
...
@@ -72,24 +77,45 @@ int run_groupnorm_example()
...
@@ -72,24 +77,45 @@ int run_groupnorm_example()
bool
pass
=
true
;
bool
pass
=
true
;
{
{
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
YDataType
>
host_y
({
M
,
N
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
Tensor
<
SaveMeanInvStdDataType
>
host_save_mean
({
M
});
GammaDataType
,
Tensor
<
SaveMeanInvStdDataType
>
host_save_inv_std
({
M
});
BetaDataType
,
YDataType
,
using
ReferenceInstance
=
ComputeDataType
,
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
PassThrough
,
GammaDataType
,
Rank
,
BetaDataType
,
NumReduceDim
>
;
YDataType
,
SaveMeanInvStdDataType
,
ComputeDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
ReferenceInstance
ref
;
ReferenceInstance
ref
;
auto
ref_argument
=
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
PassThrough
{},
{
M
,
N
},
{
1
},
1
e
-
4
);
gamma
,
auto
ref_invoker
=
ref
.
MakeInvoker
();
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
PassThrough
{},
{
M
,
N
},
{
1
},
1
e
-
4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1
e
-
3
,
1
e
-
3
);
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results (y)"
,
1
e
-
3
,
1
e
-
3
);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
FromDevice
(
save_mean
.
mData
.
data
());
save_inv_std_dev
.
FromDevice
(
save_inv_std
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
save_mean
,
host_save_mean
,
"Error: Incorrect results (mean)"
,
1
e
-
3
,
1
e
-
3
);
pass
&=
ck
::
utils
::
check_err
(
save_inv_std
,
host_save_inv_std
,
"Error: Incorrect results (inv_std)"
,
1
e
-
3
,
1
e
-
3
);
#endif
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
View file @
f30e5975
...
@@ -3,44 +3,38 @@ list(APPEND gpu_list2 gfx1100 gfx1101 gfx1102)
...
@@ -3,44 +3,38 @@ list(APPEND gpu_list2 gfx1100 gfx1101 gfx1102)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list1 AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list1 AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_custom_target
(
example_grouped_conv_fwd_multiple_d
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp16 grouped_conv_fwd_bias_relu_add_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
add_example_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp16
)
endif
()
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_xdl_fp16 grouped_conv_fwd_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_xdl_fp16
)
endif
()
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_fp32 grouped_conv_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
if
(
result EQUAL 0
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_fp32
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
endif
()
add_example_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_bf16 grouped_conv_fwd_bias_relu_add_xdl_bf16.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_bf16
)
add_example_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
endif
()
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int8 grouped_conv_fwd_bias_relu_add_xdl_int8.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
result EQUAL 0
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int8
)
add_example_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
endif
()
# USE_BITINT_EXTENSION_INT4
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_xdl_int4 grouped_conv_fwd_bias_relu_add_xdl_int4.cpp
)
set
(
target 1
)
if
(
result EQUAL 0
)
endif
()
add_dependencies
(
example_grouped_conv_fwd_multiple_d example_grouped_conv_fwd_bias_relu_add_xdl_int4
)
endif
()
endif
()
# USE_BITINT_EXTENSION_INT4
set
(
target 1
)
endif
()
endforeach
()
endforeach
()
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_fp16 grouped_conv_fwd_bias_relu_add_wmma_fp16.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
)
add_example_executable
(
example_grouped_conv_fwd_bias_relu_add_wmma_int8 grouped_conv_fwd_bias_relu_add_wmma_int8.cpp
)
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/30_grouped_conv_fwd_multiple_d/README.md
View file @
f30e5975
...
@@ -4,7 +4,7 @@ arg1: verification (0=no, 1=yes)
...
@@ -4,7 +4,7 @@ arg1: verification (0=no, 1=yes)
arg2: initialization
(
0
=
no init,
1
=
integer value,
2
=
decimal value
)
arg2: initialization
(
0
=
no init,
1
=
integer value,
2
=
decimal value
)
arg3:
time
kernel
(
0
=
no,
1
=
yes
)
arg3:
time
kernel
(
0
=
no,
1
=
yes
)
Following arguments
(
depending on number of spatial dims
)
:
Following arguments
(
depending on number of spatial dims
)
:
Number of spatial dimensions
(
1
=
Conv1
d
,
2
=
Conv2
d
,
3
=
Conv3
d
)
Number of spatial dimensions
(
1
=
Conv1
D
,
2
=
Conv2
D
,
3
=
Conv3
D
)
G, N, K, C,
G, N, K, C,
<filter spatial dimensions>,
(
ie Y, X
for
2D
)
<filter spatial dimensions>,
(
ie Y, X
for
2D
)
<input image spatial dimensions>,
(
ie Hi, Wi
for
2D
)
<input image spatial dimensions>,
(
ie Hi, Wi
for
2D
)
...
...
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
f30e5975
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
endif
()
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
endif
()
add_example_executable
(
example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16
)
endif
()
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
endif
()
add_example_executable
(
example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
endif
()
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16
)
endif
()
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
endif
()
example/35_splitK_gemm/CMakeLists.txt
View file @
f30e5975
...
@@ -4,28 +4,23 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -4,28 +4,23 @@ foreach(gpu IN LISTS GPU_TARGETS)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_splitK_gemm_xdl
)
add_custom_target
(
example_splitK_gemm_xdl
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp32 splitK_gemm_xdl_fp32.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_fp32
)
endif
()
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_fp16 splitK_gemm_xdl_fp16.cpp
)
add_example_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16
)
if
(
result EQUAL 0
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_fp16
)
add_example_executable
(
example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp
)
endif
()
add_example_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16
)
add_example_executable
(
example_splitK_gemm_xdl_bf16 splitK_gemm_xdl_bf16.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_bf16
)
add_example_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int8
)
endif
()
add_example_executable
(
example_splitK_gemm_xdl_int8 splitK_gemm_xdl_int8.cpp
)
if
(
result EQUAL 0
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int8
)
endif
()
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
add_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
endif
()
endif
()
endif
()
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
View file @
f30e5975
...
@@ -2,27 +2,26 @@ list(APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942)
...
@@ -2,27 +2,26 @@ list(APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102
)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list_xdl AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list_xdl AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_example_executable
(
example_grouped_conv_bwd_data_xdl_fp16 grouped_conv_bwd_data_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_grouped_conv_bwd_data_xdl_fp16 grouped_conv_bwd_data_xdl_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_xdl_fp16
)
add_example_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_xdl_fp16
)
endif
()
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_xdl_fp16 grouped_conv_bwd_data_bias_relu_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_data_bias_relu_xdl_fp16 grouped_conv_bwd_data_bias_relu_xdl_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_xdl_fp16
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_bias_relu_xdl_fp16
)
endif
()
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list_wmma AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list_wmma AND target EQUAL 0
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_custom_target
(
example_grouped_conv_bwd_data
)
add_example_executable
(
example_grouped_conv_bwd_data_wmma_fp16 grouped_conv_bwd_data_wmma_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_grouped_conv_bwd_data_wmma_fp16 grouped_conv_bwd_data_wmma_fp16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_wmma_fp16
)
add_
example_
dependencies
(
example_grouped_conv_bwd_data example_grouped_conv_bwd_data_wmma_fp16
)
endif
()
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/39_permute/CMakeLists.txt
View file @
f30e5975
add_custom_target
(
example_permute
)
add_custom_target
(
example_permute
)
add_example_executable
(
example_permute_1xHxW_fp16 permute_1xHxW_fp16.cpp
)
add_example_executable
(
example_permute_1xHxW_fp16 permute_1xHxW_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_permute example_permute_1xHxW_fp16
)
add_dependencies
(
example_permute example_permute_1xHxW_fp16
)
endif
()
add_example_executable
(
example_permute_NxHxW_fp16 permute_NxHxW_fp16.cpp
)
add_example_executable
(
example_permute_NxHxW_fp16 permute_NxHxW_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_permute example_permute_NxHxW_fp16
)
add_dependencies
(
example_permute example_permute_NxHxW_fp16
)
endif
()
add_example_executable
(
example_permute_HxWx4_fp16 permute_HxWx4_fp16.cpp
)
add_example_executable
(
example_permute_HxWx4_fp16 permute_HxWx4_fp16.cpp
)
if
(
result EQUAL 0
)
add_example_dependencies
(
example_permute example_permute_HxWx4_fp16
)
add_dependencies
(
example_permute example_permute_HxWx4_fp16
)
endif
()
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
View file @
f30e5975
...
@@ -6,11 +6,14 @@
...
@@ -6,11 +6,14 @@
constexpr
int
Rank
=
5
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
#define SAVE_MEAN_INV_STD
struct
YElementOp
struct
YElementOp
{
{
...
@@ -39,6 +42,7 @@ using DeviceInstance =
...
@@ -39,6 +42,7 @@ using DeviceInstance =
BetaDataType
,
BetaDataType
,
ComputeDataType
,
ComputeDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
YElementOp
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
...
@@ -53,7 +57,8 @@ using DeviceInstance =
...
@@ -53,7 +57,8 @@ using DeviceInstance =
2
,
// GammaScalarPerVector
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
#include "run_groupnorm_example.inc"
...
...
example/42_groupnorm/groupnorm_splitk_fp16.cpp
View file @
f30e5975
...
@@ -6,12 +6,15 @@
...
@@ -6,12 +6,15 @@
constexpr
int
Rank
=
5
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
SaveMeanInvStdDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationSplitKImpl
<
XDataType
,
ck
::
tensor_operation
::
device
::
DeviceNormalizationSplitKImpl
<
XDataType
,
...
@@ -19,6 +22,7 @@ using DeviceInstance =
...
@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType
,
BetaDataType
,
ComputeDataType
,
ComputeDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
YElementOp
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
...
@@ -33,7 +37,8 @@ using DeviceInstance =
...
@@ -33,7 +37,8 @@ using DeviceInstance =
2
,
// GammaScalarPerVector
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
#include "run_groupnorm_example.inc"
...
...
example/42_groupnorm/groupnorm_swish_fp16.cpp
View file @
f30e5975
...
@@ -6,12 +6,15 @@
...
@@ -6,12 +6,15 @@
constexpr
int
Rank
=
5
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
SaveMeanInvStdDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
...
@@ -19,6 +22,7 @@ using DeviceInstance =
...
@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType
,
BetaDataType
,
ComputeDataType
,
ComputeDataType
,
YDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
YElementOp
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
...
@@ -33,7 +37,8 @@ using DeviceInstance =
...
@@ -33,7 +37,8 @@ using DeviceInstance =
2
,
// GammaScalarPerVector
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
#include "run_groupnorm_example.inc"
...
...
example/42_groupnorm/run_groupnorm_example.inc
View file @
f30e5975
...
@@ -34,6 +34,8 @@ int run_groupnorm_example(int argc, char* argv[])
...
@@ -34,6 +34,8 @@ int run_groupnorm_example(int argc, char* argv[])
Tensor
<
YDataType
>
y
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
YDataType
>
y
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
BetaDataType
>
beta
({
G
,
C
});
Tensor
<
BetaDataType
>
beta
({
G
,
C
});
Tensor
<
SaveMeanInvStdDataType
>
save_mean
({
N
,
G
});
Tensor
<
SaveMeanInvStdDataType
>
save_inv_std
({
N
,
G
});
ck
::
utils
::
FillUniformDistribution
<
XDataType
>
{
0.
f
,
1.
f
}(
x
);
ck
::
utils
::
FillUniformDistribution
<
XDataType
>
{
0.
f
,
1.
f
}(
x
);
ck
::
utils
::
FillUniformDistribution
<
GammaDataType
>
{
0.
f
,
1.
f
}(
gamma
);
ck
::
utils
::
FillUniformDistribution
<
GammaDataType
>
{
0.
f
,
1.
f
}(
gamma
);
...
@@ -43,6 +45,11 @@ int run_groupnorm_example(int argc, char* argv[])
...
@@ -43,6 +45,11 @@ int run_groupnorm_example(int argc, char* argv[])
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
#ifdef SAVE_MEAN_INV_STD
DeviceMem
save_mean_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
save_inv_std_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_inv_std
.
mDesc
.
GetElementSpaceSize
());
#endif
x_dev
.
ToDevice
(
x
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
...
@@ -57,14 +64,23 @@ int run_groupnorm_example(int argc, char* argv[])
...
@@ -57,14 +64,23 @@ int run_groupnorm_example(int argc, char* argv[])
{
0
,
0
,
0
,
C
,
1
},
{
0
,
0
,
0
,
C
,
1
},
{
0
,
0
,
0
,
C
,
1
},
{
0
,
0
,
0
,
C
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
{
1
,
2
,
4
},
// reduction dimension: [H, W, C]
{
1
,
2
,
4
},
// reduction dimension: [H, W, C]
1
e
-
6
,
1
e
-
6
,
x_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
GetDeviceBuffer
(),
save_inv_std_dev
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
nullptr
,
nullptr
,
#endif
y_element_op
);
y_element_op
);
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
...
@@ -92,21 +108,40 @@ int run_groupnorm_example(int argc, char* argv[])
...
@@ -92,21 +108,40 @@ int run_groupnorm_example(int argc, char* argv[])
bool
pass
=
true
;
bool
pass
=
true
;
{
{
Tensor
<
YDataType
>
host_y
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
YDataType
>
host_y
({
N
,
H
,
W
,
G
,
C
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnorm
<
XDataType
,
Tensor
<
SaveMeanInvStdDataType
>
host_save_mean
(
HostTensorDescriptor
{
N
,
G
});
GammaDataType
,
Tensor
<
SaveMeanInvStdDataType
>
host_save_inv_std
(
HostTensorDescriptor
{
N
,
G
});
BetaDataType
,
using
ReferenceInstance
=
YDataType
,
ck
::
tensor_operation
::
host
::
ReferenceGroupnorm
<
XDataType
,
ComputeDataType
,
GammaDataType
,
YElementOp
>
;
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ComputeDataType
,
YElementOp
>
;
ReferenceInstance
ref
;
ReferenceInstance
ref
;
auto
ref_argument
=
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
y_element_op
,
{
N
,
H
,
W
,
G
,
C
},
1
e
-
6
);
gamma
,
auto
ref_invoker
=
ref
.
MakeInvoker
();
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
y_element_op
,
{
N
,
H
,
W
,
G
,
C
},
1
e
-
6
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1
e
-
3
,
1
e
-
3
);
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1
e
-
3
,
1
e
-
3
);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
FromDevice
(
save_mean
.
mData
.
data
());
save_inv_std_dev
.
FromDevice
(
save_inv_std
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
save_mean
,
host_save_mean
,
"Error: Incorrect results (mean)"
,
1
e
-
3
,
1
e
-
3
);
pass
&=
ck
::
utils
::
check_err
(
save_inv_std
,
host_save_inv_std
,
"Error: Incorrect results (inv_std)"
,
1
e
-
3
,
1
e
-
3
);
#endif
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
View file @
f30e5975
...
@@ -167,20 +167,31 @@ int main()
...
@@ -167,20 +167,31 @@ int main()
XElementwiseOperation
>
(
x
,
a
,
b
,
mn
,
XElementwiseOperation
{});
XElementwiseOperation
>
(
x
,
a
,
b
,
mn
,
XElementwiseOperation
{});
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
AccDataType
>
host_save_mean
({
M
});
Tensor
<
AccDataType
>
host_save_inv_std
({
M
});
using
ReferenceInstance
=
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
GammaDataType
,
GammaDataType
,
BetaDataType
,
BetaDataType
,
YDataType
,
YDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
YElementwiseOperation
,
YElementwiseOperation
,
Rank
,
Rank
,
NumReduceDim
>
;
NumReduceDim
>
;
ReferenceInstance
ref
;
ReferenceInstance
ref
;
auto
ref_argument
=
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
gamma
,
auto
ref_invoker
=
ref
.
MakeInvoker
();
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
y_dev
.
FromDevice
(
y
.
mData
.
data
());
...
...
example/52_im2col_col2im/CMakeLists.txt
View file @
f30e5975
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_im2col_col2im
)
add_custom_target
(
example_im2col_col2im
)
add_example_executable
(
example_image_to_column_f32 image_to_column_f32.cpp
)
add_dependencies
(
example_im2col_col2im example_image_to_column_f32
)
add_example_executable
(
example_image_to_column_f32 image_to_column_f32.cpp
)
add_example_executable
(
example_column_to_image_f32 column_to_image_f32.cpp
)
add_example_dependencies
(
example_im2col_col2im example_image_to_column_f32
)
add_dependencies
(
example_im2col_col2im example_column_to_image_f32
)
set
(
target 1
)
add_example_executable
(
example_column_to_image_f32 column_to_image_f32.cpp
)
endif
()
add_example_dependencies
(
example_im2col_col2im example_column_to_image_f32
)
set
(
target 1
)
endif
()
endforeach
()
endforeach
()
Prev
1
2
3
4
5
6
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment