"tests/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "66de221409f8d17222348a7c0ca60f8322e278b4"
Commit f22f565c authored by Astha Rai's avatar Astha Rai
Browse files

changing strides for col major

parent faaa6637
add_example_executable(example_elementwise_permute_4D_fp32_ht elementwise_permute_4D_fp32_ht.cpp) add_example_executable(example_elementwise_permute_4D_fp32_ht elementwise_permute_4D_fp32_ht.cpp)
add_example_executable(example_elementwise_permute_4D_fp16_ht elementwise_permute_4D_fp16_ht.cpp) add_example_executable(example_elementwise_permute_4D_fp16_ht elementwise_permute_4D_fp16_ht.cpp)
add_example_executable(example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp)
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl_ht.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F32;
using BDataType = F32;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using UnaryOp = ck::tensor_operation::element_wise::UnarySquare;
using Scale = ck::tensor_operation::element_wise::Scale;
using DeviceElementwisePermuteInstance =
ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
ck::Tuple<BDataType>, // OutDataTypeTuple
PassThrough, // ElementwiseOp
UnaryOp, // UnaryOp
Scale, // Scalar
4, // NumDim
8, // MPerThread
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<1>>; // OutScalarPerVectorSeq
template <typename HostTensorA, typename HostTensorB, typename FunctorA, typename FunctorB>
void host_elementwise4D(HostTensorB& B_cwhn,
const HostTensorA& A_whcn,
FunctorA functor_a,
FunctorB functor_b,
float scale)
{
for(std::size_t w = 0; w < A_whcn.mDesc.GetLengths()[0]; ++w)
for(std::size_t h = 0; h < A_whcn.mDesc.GetLengths()[1]; ++h)
for(std::size_t c = 0; c < A_whcn.mDesc.GetLengths()[2]; ++c)
for(std::size_t n = 0; n < A_whcn.mDesc.GetLengths()[3]; ++n)
{
ADataType tmp_val;
auto a_val = A_whcn(w, h, c, n);
functor_b(tmp_val, a_val);
functor_a(B_cwhn(c, w, h, n), scale * tmp_val);
}
}
int main()
{
bool do_verification = true;
bool time_kernel = true;
std::vector<std::size_t> whcn = {4, 2, 1, 8};
std::vector<std::size_t> cwhn = {1, 4, 2, 8};
Tensor<ADataType> a(whcn);
Tensor<BDataType> b(cwhn);
float scale = 1.f;
// a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
for(int i = 0; i < int(a.mData.size()); i++)
{
a.mData[i] = i;
}
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides = {static_cast<int>(whcn[0] * whcn[1] * whcn[2]),
static_cast<int>(whcn[0] * whcn[1]),
static_cast<int>(whcn[0]),
1};
std::array<ck::index_t, 4> b_strides = {static_cast<int>(cwhn[0] * cwhn[1] * cwhn[2]),
1,
static_cast<int>(cwhn[0] * cwhn[1]),
static_cast<int>(cwhn[0])};
ck::ranges::copy(whcn, ab_lengths.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(ab_lengths,
{a_strides},
{b_strides},
input,
output,
PassThrough{},
UnaryOp{},
Scale{scale});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
std::cout << "A (whcn): " << a.mDesc << std::endl;
std::cout << "B (cwhn): " << b.mDesc << std::endl;
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * whcn[0] * whcn[1] * whcn[2] * whcn[3];
std::size_t num_btype = sizeof(ADataType) * (whcn[0] * whcn[1] * whcn[2] * whcn[3]) +
sizeof(BDataType) * (whcn[0] * whcn[1] * whcn[2] * whcn[3]);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
bool pass = true;
LogRangeAsType<float>(std::cout << "A : ", a.mData, ",") << std::endl;
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(cwhn);
host_elementwise4D(host_b, a, PassThrough{}, UnaryOp{}, scale);
LogRangeAsType<float>(std::cout << "B : ", b.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "Host B : ", host_b.mData, ",") << std::endl;
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return pass ? 0 : 1;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment