Unverified Commit ebab84b6 authored by Shaojie WANG's avatar Shaojie WANG Committed by GitHub
Browse files

MNKO padding support on bmm+masking+scale+softmax+bmm+premute (#425)



* add lower triangle bmm

* init code for tile skipping

* functionality right with lower triangle mask

* add decoder lower triangular mask calculation

* use 7*13 group

* fix n2 compute error

* attention with lower triangle mask with tile skipping

* add template to distinguish masking kernel

* rename template and remove default template value

* remove lower triangle gemm reference struct

* add some comments on example

* add 10 instance for masking bmm + scale + softmax + bmm + permute kernels

* add test

* add test file

* add gtest for bmm masking scale softmax bmm permute

* clang-format

* fix compile error

* check lef bottom corner for tile skipping

* fix error: check left bottom corner for tile skipping

* add k padding

* add test and instance for MNK padding

* passing a mask struct

* fix instances

* delete used comments

* format
Co-authored-by: default avatardanyao12 <yaodan@dc-smc-13.amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent 9f7c1930
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_custom_target(example_gemm_scale_softmax_gemm)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CPermuteNumDims_G_M_O =
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_O,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
true>; // MaskOutUpperTriangle
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 512;
ck::index_t N = 512;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
float alpha = 1;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
exit(0);
}
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
const int BatchCount = G0 * G1;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_gs_ms_os_host_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
Tensor<CDataType> c_gs_ms_os_device_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_gs_ms_os_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_gs_ms_os_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
StrideA,
StrideB0,
StrideB1,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<CDataType> c_g_m_o_host_result(std::vector<int>{BatchCount, M, O},
std::vector<int>{M * O, O, 1});
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
// gemm 0
ref_gemm0_invoker.Run(ref_gemm0_argument);
// mask out upper triangle
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(idx[1] < idx[2])
self(idx) = -ck::NumericLimits<float>::Infinity();
});
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
// softmax
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
// gemm1
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData)
? 0
: 1;
}
return 0;
}
......@@ -58,7 +58,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
......@@ -117,7 +117,8 @@ using DeviceGemmInstance =
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>; // MaskOutUpperTriangle
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
......
......@@ -55,7 +55,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle<
ALayout,
......@@ -113,7 +113,8 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftma
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
......
......@@ -58,7 +58,7 @@ using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle<
......@@ -117,7 +117,8 @@ using DeviceGemmInstance =
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8>; // CShuffleBlockTransferScalarPerVector_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
......@@ -180,8 +181,8 @@ int main(int argc, char* argv[])
{
int M = 128 * (rand() % 8 + 1);
int N = 128 * (rand() % 8 + 1);
int K = 64;
int O = 64 * (rand() % 2 + 1);
int K = 40;
int O = 40 * (rand() % 2 + 1);
int Batch = rand() % 8 + 1;
const int StrideA = ck::is_same_v<ALayout, Row> ? K : M;
......
......@@ -35,6 +35,7 @@ template <typename GridwiseGemm,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2CTileMap,
typename ComputeBasePtrOfStridedBatch,
typename C0MatrixMask,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
......@@ -57,7 +58,8 @@ __global__ void
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap block_2_ctile_map,
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch)
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch,
const C0MatrixMask c0_matrix_mask)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -88,7 +90,8 @@ __global__ void
b_grid_desc_bk0_n_bk1,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_ctile_map);
block_2_ctile_map,
c0_matrix_mask);
#else
ignore = p_a_grid;
ignore = p_b_grid;
......@@ -106,6 +109,7 @@ __global__ void
ignore = block_2_ctile_map;
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
ignore = c0_matrix_mask;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
......@@ -168,6 +172,7 @@ template <typename ALayout,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
bool MaskOutUpperTriangle,
LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
: public DeviceBatchedGemmSoftmaxGemmPermute<ALayout,
......@@ -194,9 +199,6 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock};
// FIXME: pad K
static_assert(!matrix_padder.PadK, "KPadding is currently not supported");
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
......@@ -398,6 +400,29 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N({}, {}));
using CGridDesc_G_M_N = decltype(MakeCGridDescriptor_G_M_N({}, {}));
// to track the points which need to be set to -inf on C0
// Note: no need to reset M padding value, because they will not be stored out.
struct C0MatrixMask
{
C0MatrixMask(index_t NRaw) : NRaw_(NRaw) {}
__host__ __device__ bool IsUpperTriangle(index_t m, index_t n) const { return n > m; }
__host__ __device__ bool IsNOutOfBound(/*index_t m, */ index_t n) const
{
return n >= NRaw_;
}
__host__ __device__ bool IsMaskedElement(index_t m, index_t n) const
{
return IsUpperTriangle(m, n) || IsNOutOfBound(n);
}
private:
// index_t MRaw_;
index_t NRaw_;
};
struct ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch(index_t BatchStrideA,
......@@ -498,7 +523,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
matrix_padder.PadN>;
matrix_padder.PadN,
MaskOutUpperTriangle>;
// Argument
// FIXME: constness
......@@ -548,6 +574,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
batch_count_(Batch),
compute_base_ptr_of_batch_{
BatchStrideA, BatchStrideB, BatchStrideB1, c_grid_desc_g_m_n_},
c0_matrix_mask_{NRaw},
raw_lengths_m_n_k_o_{MRaw, NRaw, KRaw, Gemm1NRaw},
c_extent_lowest_{c_gs_ms_gemm1ns_lengths.back()},
c_stride_lowest_{c_gs_ms_gemm1ns_strides.back()}
......@@ -585,6 +612,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// check C0 masking and padding
C0MatrixMask c0_matrix_mask_;
// For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_m_n_k_o_;
index_t c_extent_lowest_;
......@@ -632,6 +662,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
ComputeBasePtrOfStridedBatch,
C0MatrixMask,
has_main_k_block_loop_>;
return launch_and_time_kernel(stream_config,
......@@ -654,7 +685,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_,
arg.batch_count_,
arg.compute_base_ptr_of_batch_);
arg.compute_base_ptr_of_batch_,
arg.c0_matrix_mask_);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
......
......@@ -35,6 +35,7 @@ template <typename GridwiseGemm,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2CTileMap,
typename ComputeBasePtrOfStridedBatch,
typename C0MatrixMask,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
......@@ -57,7 +58,8 @@ __global__ void
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap block_2_ctile_map,
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch)
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch,
const C0MatrixMask c0_matrix_mask)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
......@@ -88,7 +90,8 @@ __global__ void
b_grid_desc_bk0_n_bk1,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_ctile_map);
block_2_ctile_map,
c0_matrix_mask);
#else
ignore = p_a_grid;
ignore = p_b_grid;
......@@ -106,6 +109,7 @@ __global__ void
ignore = block_2_ctile_map;
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
ignore = c0_matrix_mask;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
......@@ -177,6 +181,7 @@ template <typename ALayout,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
bool MaskOutUpperTriangle,
LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
: public DeviceBatchedGemmSoftmaxGemm<ALayout,
......@@ -203,9 +208,6 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock};
// FIXME: pad K
static_assert(!matrix_padder.PadK, "KPadding is currently not supported");
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
......@@ -313,6 +315,29 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
return matrix_padder.PadCDescriptor_M_N(c_grid_desc_mraw_nraw);
}
// to track the points which need to be set to -inf on C0
// Note: no need to reset M padding value, because they will not be stored out.
struct C0MatrixMask
{
C0MatrixMask(index_t NRaw) : NRaw_(NRaw) {}
__host__ __device__ bool IsUpperTriangle(index_t m, index_t n) const { return n > m; }
__host__ __device__ bool IsNOutOfBound(/*index_t m, */ index_t n) const
{
return n >= NRaw_;
}
__host__ __device__ bool IsMaskedElement(index_t m, index_t n) const
{
return IsUpperTriangle(m, n) || IsNOutOfBound(n);
}
private:
// index_t MRaw_;
index_t NRaw_;
};
struct ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch(index_t BatchStrideA,
......@@ -418,7 +443,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
matrix_padder.PadN>;
matrix_padder.PadN,
MaskOutUpperTriangle>;
// Argument
struct Argument : public BaseArgument
......@@ -463,6 +489,7 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
c_element_op_{c_element_op},
batch_count_(Batch),
compute_base_ptr_of_batch_{BatchStrideA, BatchStrideB, BatchStrideB1, BatchStrideC},
c0_matrix_mask_{NRaw},
raw_lengths_m_n_k_o_{MRaw, NRaw, KRaw, Gemm1NRaw}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
......@@ -497,6 +524,9 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
index_t batch_count_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// check C0 masking and padding
C0MatrixMask c0_matrix_mask_;
// For robust IsSupportedArgument() check
std::vector<index_t> raw_lengths_m_n_k_o_;
};
......@@ -542,6 +572,7 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
ComputeBasePtrOfStridedBatch,
C0MatrixMask,
has_main_k_block_loop_>;
return launch_and_time_kernel(stream_config,
......@@ -564,7 +595,8 @@ struct DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_,
arg.batch_count_,
arg.compute_base_ptr_of_batch_);
arg.compute_base_ptr_of_batch_,
arg.c0_matrix_mask_);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
......
......@@ -98,7 +98,8 @@ __global__ void
arg_ptr[group_id].b_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].block_2_ctile_map_);
arg_ptr[group_id].block_2_ctile_map_,
arg_ptr[group_id].c0_matrix_mask_);
#else
ignore = group_kernel_args;
ignore = group_count;
......@@ -169,6 +170,7 @@ template <typename ALayout,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
bool MaskOutUpperTriangle,
LoopScheduler LoopSched = LoopScheduler::Default>
struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
: public DeviceGroupedGemmSoftmaxGemmPermute<ALayout,
......@@ -209,9 +211,6 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
GemmGemmPadder<GemmSpec, index_t, index_t, index_t, index_t>{
MPerBlock, NPerBlock, KPerBlock, Gemm1NPerBlock};
// FIXME: pad K
static_assert(!matrix_padder.PadK, "KPadding is currently not supported");
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
......@@ -413,6 +412,29 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N({}, {}));
using CGridDesc_G_M_N = decltype(MakeCGridDescriptor_G_M_N({}, {}));
// to track the points which need to be set to -inf on C0
// Note: no need to reset M padding value, because they will not be stored out.
struct C0MatrixMask
{
C0MatrixMask(index_t NRaw) : NRaw_(NRaw) {}
__host__ __device__ bool IsUpperTriangle(index_t m, index_t n) const { return n > m; }
__host__ __device__ bool IsNOutOfBound(/*index_t m, */ index_t n) const
{
return n >= NRaw_;
}
__host__ __device__ bool IsMaskedElement(index_t m, index_t n) const
{
return IsUpperTriangle(m, n) || IsNOutOfBound(n);
}
private:
// index_t MRaw_;
index_t NRaw_;
};
struct ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch(index_t BatchStrideA,
......@@ -513,7 +535,8 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
matrix_padder.PadN>;
matrix_padder.PadN,
MaskOutUpperTriangle>;
using Block2CTileMap = OffsettedBlockToCTileMap<typename GridwiseGemm::DefaultBlock2CTileMap>;
......@@ -536,6 +559,9 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
index_t num_blocks_per_batch_;
ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch_;
// check C0 masking and padding
C0MatrixMask c0_matrix_mask_;
// block-to-c-tile map
Block2CTileMap block_2_ctile_map_;
......@@ -623,6 +649,9 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
problem_desc_vec[i].BatchStrideB1,
c_grid_desc_g_m_n);
// C0 mask
const auto c0_matrix_mask = C0MatrixMask(problem_desc_vec[i].N);
grid_size_ += grid_size_grp;
group_kernel_args_.push_back({p_a_grid,
......@@ -635,6 +664,7 @@ struct DeviceGroupedGemmSoftmaxGemmPermute_Xdl_CShuffle
c_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_ctile_map.CalculateGridSize(c_grid_desc_m_n),
compute_base_ptr_of_batch,
c0_matrix_mask,
block_2_ctile_map,
BlockStart,
BlockEnd});
......
......@@ -76,7 +76,8 @@ template <typename FloatAB,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched,
bool PadN>
bool PadN,
bool MaskOutUpperTriangle>
struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
{
static_assert(LoopSched == LoopScheduler::Default,
......@@ -97,6 +98,10 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
static constexpr auto BK0 = Number<KPerBlock / BK1Value>{};
static constexpr auto AK1 = Number<AK1Value>{};
static constexpr auto BK1 = Number<BK1Value>{};
static constexpr auto Gemm0MWaves = MPerBlock / (MPerXdl * MXdlPerWave);
static constexpr auto Gemm0NWaves = NPerBlock / (NPerXdl * NXdlPerWave);
// Gemm1
static constexpr auto B1K0 = Number<Gemm1KPerBlock / B1K1Value>{};
static constexpr auto B1K1 = Number<B1K1Value>{};
......@@ -361,7 +366,7 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
};
template <bool HasMainKBlockLoop, typename Block2CTileMap>
template <bool HasMainKBlockLoop, typename Block2CTileMap, typename C0MatrixMask>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
const FloatAB* __restrict__ p_b1_grid,
......@@ -377,22 +382,13 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2CTileMap& block_2_ctile_map)
const Block2CTileMap& block_2_ctile_map,
const C0MatrixMask& c0_matrix_mask)
{
const auto a_grid_buf =
conditional_expr<PadN>(make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid,
a_grid_desc_ak0_m_ak1.GetElementSpaceSize(),
NumericLimits<FloatAB>::QuietNaN()),
make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize()));
const auto b_grid_buf =
conditional_expr<PadN>(make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid,
b_grid_desc_bk0_n_bk1.GetElementSpaceSize(),
NumericLimits<FloatAB>::QuietNaN()),
make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize()));
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b_grid, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
const auto b1_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_b1_grid, b1_grid_desc_bk0_n_bk1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
......@@ -749,10 +745,30 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
running_max = NumericLimits<FloatGemmAcc>::Lowest();
running_max_new = NumericLimits<FloatGemmAcc>::Lowest();
// decoder lower triangular mask
const auto thread_cluster_idx = threadid_to_m_n_thread_cluster_adaptor.CalculateBottomIndex(
make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_n_cluster_id = thread_cluster_idx[I1];
const index_t MPerRepeat = MPerBlock / MXdlPerWave;
const index_t NPerRepeat = NPerBlock / NXdlPerWave;
const index_t mstart = m_block_data_idx_on_grid + thread_m_cluster_id;
// gemm1 K loop
index_t gemm1_k_block_outer_index = 0;
do
{
if constexpr(MaskOutUpperTriangle)
{
auto gemm0_n_block_idx =
__builtin_amdgcn_readfirstlane(gemm1_k_block_outer_index * NPerBlock);
if(c0_matrix_mask.IsUpperTriangle(m_block_data_idx_on_grid, gemm0_n_block_idx) &&
c0_matrix_mask.IsUpperTriangle(m_block_data_idx_on_grid + MPerBlock - 1,
gemm0_n_block_idx))
{
continue;
}
}
// gemm0
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_grid_desc_ak0_m_ak1,
a_block_desc_ak0_m_ak1,
......@@ -770,16 +786,63 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
acc_thread_buf,
num_k_block_main_loop);
// Acc0 elementwise Op
#if CK_WORKAROUND_SWDEV_XXXXXX_ATTN_KERNEL_CLANG_CANNOT_SCAVENGE_REGISTER
static_for<0, acc_thread_buf.Size(), 1>{}(
[&](auto i) { acc_element_op(acc_thread_buf(i), acc_thread_buf[i]); });
#else
static_for<0, acc_thread_buf.Size(), 1>{}([&](auto i) {
ElementOpPredicatedResetNaNToMinusInf<PadN>{}.Run(
acc_thread_buf(i), acc_element_op, acc_thread_buf[i]);
});
#endif
// do MNK padding or upper triangular masking
if constexpr(MaskOutUpperTriangle || PadN)
{
const index_t nstart = gemm1_k_block_outer_index * NPerBlock;
static_for<0, m0, 1>{}([&](auto m0_i) {
const index_t m_global = mstart + m0_i * MPerRepeat;
const index_t acc_idx_m0 = m0_i * n0 * n2 * n4;
static_for<0, n0, 1>{}([&](auto n0_i) {
// constexpr auto nrepeat_i = n0_i * NPerRepeat;
// const index_t nstartxdl = nstart + nrepeat_i;
const index_t nstartxdl = nstart + n0_i * NPerRepeat;
const index_t acc_idx_n0 = acc_idx_m0 + n0_i * n2 * n4;
static_for<0, n2, 1>{}([&](auto n2_i) {
const index_t nstartgroup =
nstartxdl + thread_n_cluster_id * n4 + n2_i * AccN3 * n4;
const index_t acc_idx_n2 = acc_idx_n0 + n2_i * n4;
static_for<0, n4, 1>{}([&](auto n4_i) {
const index_t n_global = nstartgroup + n4_i;
const auto acc_offset = Number<acc_idx_n2 + n4_i>{};
if constexpr(MaskOutUpperTriangle)
{
if(c0_matrix_mask.IsMaskedElement(m_global, n_global))
{
acc_thread_buf(acc_offset) =
-ck::NumericLimits<float>::Infinity();
}
else
{
acc_element_op(acc_thread_buf(acc_offset),
acc_thread_buf[acc_offset]);
}
}
else
{
// ignore m_global;
if(c0_matrix_mask.IsNOutOfBound(n_global))
{
acc_thread_buf(acc_offset) =
-ck::NumericLimits<float>::Infinity();
}
else
{
acc_element_op(acc_thread_buf(acc_offset),
acc_thread_buf[acc_offset]);
}
}
});
});
});
});
}
else
{
static_for<0, acc_thread_buf.Size(), 1>{}(
[&](auto i) { acc_element_op(acc_thread_buf(i), acc_thread_buf[i]); });
}
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using CPermuteNumDims_G_M_O =
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
void add_device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<Row,
Col,
Row,
CPermuteNumDims_G_M_O,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CPermuteNumDims_G_M_Gemm1N,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_Gemm1N,
ADataType,
B0DataType,
B1DataType,
CDataType,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough>>
{
using DeviceOp = DeviceBatchedGemmSoftmaxGemmPermute<ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_Gemm1N,
ADataType,
B0DataType,
B1DataType,
CDataType,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<B0DataType, half_t> &&
is_same_v<B1DataType, half_t> && is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<B0Layout, Col> &&
is_same_v<B1Layout, Row> &&
is_same_v<CPermuteNumDims_G_M_Gemm1N, CPermuteNumDims_G_M_O>)
{
add_device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -16,6 +16,7 @@ add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce)
add_subdirectory(batched_gemm_gemm)
add_subdirectory(batched_gemm_softmax_gemm)
add_subdirectory(batched_gemm_masking_scale_softmax_gemm_permute)
add_subdirectory(batched_gemm_add_relu_gemm_add)
add_subdirectory(grouped_gemm)
add_subdirectory(contraction_scale)
......
add_instance_library(device_batched_gemm_masking_scale_softmax_gemm_permute_instance
device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using CPermuteNumDims_G_M_O =
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmPadded = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
using device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances =
std::tuple<
// clang-format off
// 2 of them are commented out because they trigger the clang-13 issue.
//##############################################| ALayout| B0Layout| B1Layout| CPermuteNumDims_G_M_O| AData| B0Data| B1Data| CData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| MaskOut|
//##############################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| Upper|
//##############################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| Triangle|
//##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 64, 32, 8, 8, 2, 32, 32, 2, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 64, 32, 8, 8, 2, 32, 32, 1, 8, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
//DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 2, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
//DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 32, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 32, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 64, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 256, 64, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, true>,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< Row, Col, Row, CPermuteNumDims_G_M_O, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmPadded, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, true>
// clang-format on
>;
void add_device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<Row,
Col,
Row,
CPermuteNumDims_G_M_O,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_masking_scale_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_masking_scale_softmax_gemm_permute.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename ALayout,
typename B0Layout,
typename B1Layout,
typename CPermuteNumDims_G_M_O>
bool profile_batched_gemm_masking_scale_softmax_gemm_permute_impl(bool do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int O,
int G0,
int G1,
int StrideA = -1,
int StrideB0 = -1,
int StrideB1 = -1,
int BatchStrideA = -1,
int BatchStrideB0 = -1,
int BatchStrideB1 = -1,
float alpha = 1.f)
{
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
using PassThrough = tensor_operation::element_wise::PassThrough;
using Scale = tensor_operation::element_wise::Scale;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
using AccDataType = float;
// Ref Gemm0: various type in, fp32 out
using ReferenceGemm0Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, various type out
using ReferenceSoftmaxInstance =
tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: various type in, various type out
using ReferenceGemm1Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
bool pass = true;
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
const int BatchCount = G0 * G1;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_gs_ms_os_host_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
Tensor<CDataType> c_gs_ms_os_device_result(
std::vector<std::size_t>(c_gs_ms_os_lengths.begin(), c_gs_ms_os_lengths.end()),
std::vector<std::size_t>(c_gs_ms_os_strides.begin(), c_gs_ms_os_strides.end()));
// Host verification: Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<CDataType> c_g_m_o_host_result(std::vector<int>{BatchCount, M, O},
std::vector<int>{M * O, O, 1});
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
std::srand(1); // work around test flakiness
switch(init_method)
{
case 0: break;
case 1:
// Still unsure whether this kind of deterministic floating point accurary issue is expected
// or not. May want to try exact same approach as the GPU kernel in the host reference
// GEMM+Softmax+GEMM function to see if the accuracy discrepancy goes away. Until then,
// shrink the input value range as it is less likely to produce errors of around ~1e-3.
// a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
// b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
// b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
DeviceMem c_gs_ms_os_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
using DeviceOp =
tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_O,
ADataType,
B0DataType,
B1DataType,
CDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
if(do_verification)
{
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, Scale{alpha});
ref_gemm0_invoker.Run(ref_gemm0_argument);
// mask out upper triangle
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(idx[1] < idx[2])
self(idx) = -ck::NumericLimits<float>::Infinity();
});
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_gs_ms_os_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
StrideA,
StrideB0,
StrideB1,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
pass = pass & ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a_g_m_k: ", a_g_m_k.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b0_g_k_n : ", b0_g_k_n.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b1_g_n_o : ", b1_g_n_o.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_gs_ms_os_host_result : ", c_gs_ms_os_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_gs_ms_os_device_result : ",
c_gs_ms_os_device_result.mData,
",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
......@@ -42,6 +42,7 @@ add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce)
add_subdirectory(batched_gemm_gemm)
add_subdirectory(batched_gemm_softmax_gemm)
add_subdirectory(batched_gemm_masking_scale_softmax_gemm_permute)
add_subdirectory(grouped_gemm)
add_subdirectory(reduce)
add_subdirectory(convnd_fwd)
......
add_custom_target(test_batched_gemm_masking_scale_softmax_gemm_permute)
add_gtest_executable(test_batched_gemm_masking_scale_softmax_gemm_permute_fp16 test_batched_gemm_masking_scale_softmax_gemm_permute_fp16.cpp)
target_link_libraries(test_batched_gemm_masking_scale_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_masking_scale_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_masking_scale_softmax_gemm_permute test_batched_gemm_masking_scale_softmax_gemm_permute_fp16)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_masking_scale_softmax_gemm_permute_util.hpp"
template <typename Tuple>
class TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16
: public TestBatchedGemmMaskingScaleSoftmaxGemmPermute<Tuple>
{
};
// clang-format off
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using CPermuteNumDims_G_M_O =
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using KernelTypes = ::testing::Types<
std::tuple<F16, F16, F16, F16, Row, Col, Row, CPermuteNumDims_G_M_O>
>;
// clang-format on
TYPED_TEST_SUITE(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, KernelTypes);
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16) { this->Run(); }
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_PadM)
{
this->lengths_ = std::vector<std::vector<int>>{
{136, 128, 32, 128, 2, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_PadN)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 136, 32, 128, 3, 2},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_PadK)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 40, 128, 2, 4},
{128, 128, 136, 128, 4, 2},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_PadO)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 32, 136, 1, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_OddM)
{
this->lengths_ = std::vector<std::vector<int>>{
{129, 128, 32, 128, 2, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_OddN)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 129, 32, 128, 4, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_OddK)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 33, 128, 2, 3},
{128, 128, 129, 128, 2, 3},
};
this->Run();
}
// If kernel B1Layout is RowMajor, expect not to support odd O size
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Test_FP16_OddO)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 32, 129, 2, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, Bench_FP16_IrregularK)
{
this->lengths_ = std::vector<std::vector<int>>{{256, 256, 160, 160, 1, 16},
{256, 64, 160, 64, 1, 16},
{1024, 1024, 80, 80, 1, 16},
{1024, 64, 80, 64, 1, 16},
{4096, 4096, 40, 40, 1, 16},
{4096, 64, 40, 64, 1, 16}};
this->bench_ = true;
this->verify_ = false;
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, DISABLED_Bench_FP16)
{
this->lengths_ = std::vector<std::vector<int>>{
{256, 256, 64, 64, 48, 16},
{256, 256, 128, 128, 48, 16},
{512, 512, 64, 64, 48, 16},
{512, 512, 128, 128, 48, 16},
{1024, 1024, 64, 64, 48, 16},
{1024, 1024, 128, 128, 48, 16},
{2048, 2048, 64, 64, 48, 16},
{2048, 2048, 128, 128, 48, 16},
{4096, 4096, 64, 64, 48, 16},
{4096, 4096, 128, 128, 48, 16},
};
this->bench_ = true;
this->verify_ = false;
this->Run();
}
using ck::tensor_operation::device::GemmSpecialization;
// TODO: enable KPadding tests when it is implemented
TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface, GemmSpecializationSizeMatch)
{
int P = 120; // requires padding
int Q = 128; // do not require padding
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(Q, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MPadding>{}.IsSupported(P, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NPadding>{}.IsSupported(Q, P, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KPadding>{}.IsSupported(Q, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNPadding>{}.IsSupported(P, P, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKPadding>{}.IsSupported(P, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKPadding>{}.IsSupported(Q, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(P, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::OPadding>{}.IsSupported(Q, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MOPadding>{}.IsSupported(P, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NOPadding>{}.IsSupported(Q, P, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KOPadding>{}.IsSupported(Q, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNOPadding>{}.IsSupported(P, P, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKOPadding>{}.IsSupported(P, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKOPadding>{}.IsSupported(Q, P, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(P, P, P, P));
// clang-format on
}
TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface, GemmSpecializationSizeMismatch)
{
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(128, 128, 120, 128));
// EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(128, 128, 128, 120));
// Kernel can't support odd K size because SrcVectorDim == KDim and must satisfy SizeKRaw % ABSrcScalarPerVector == 0
// EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 129, 128));
// EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 130, 128));
// Kernel can't support odd O size because SrcVectorDim == ODim and must satisfy SizeORaw % B1SrcScalarPerVector == 0
// EXPECT_FALSE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 128, 129));
// clang-format on
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteFP16, AdhocTest)
{
this->lengths_ = std::vector<std::vector<int>>{
{49, 49, 64, 64, 4, 6},
{64, 49, 64, 64, 4, 6},
{1020, 1020, 64, 128, 4, 6},
{576, 576, 64, 64, 4, 6},
};
this->bench_ = true;
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "profiler/include/profile_batched_gemm_masking_scale_softmax_gemm_permute_impl.hpp"
using ck::tensor_operation::device::GemmSpecialization;
template <ck::index_t N>
using I = ck::Number<N>;
using F16 = ck::half_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <typename Tuple>
struct TestBatchedGemmMaskingScaleSoftmaxGemmPermute : public ::testing::Test
{
using ADataType = std::tuple_element_t<0, Tuple>;
using B0DataType = std::tuple_element_t<1, Tuple>;
using B1DataType = std::tuple_element_t<2, Tuple>;
using CDataType = std::tuple_element_t<3, Tuple>;
using ALayout = std::tuple_element_t<4, Tuple>;
using B0Layout = std::tuple_element_t<5, Tuple>;
using B1Layout = std::tuple_element_t<6, Tuple>;
using CPermuteNumDims_G_M_O = std::tuple_element_t<7, Tuple>;
std::vector<std::vector<int>> lengths_ = {
{256, 256, 64, 64, 6, 4},
{256, 256, 128, 128, 4, 6},
{512, 512, 64, 64, 3, 2},
{512, 512, 128, 128, 2, 3},
{1024, 1024, 64, 64, 3, 1},
{1024, 1024, 128, 128, 1, 1},
};
bool bench_ = false;
bool verify_ = true;
void RunSingle(int M, int N, int K, int O, int G0, int G1)
{
bool pass = ck::profiler::profile_batched_gemm_masking_scale_softmax_gemm_permute_impl<
ADataType,
B0DataType,
B1DataType,
CDataType,
ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_O>(verify_, 1, false, bench_, M, N, K, O, G0, G1);
EXPECT_TRUE(pass);
}
void Run()
{
for(auto lengths : this->lengths_)
{
int M = lengths[0];
int N = lengths[1];
int K = lengths[2];
int O = lengths[3];
int G0 = lengths[4];
int G1 = lengths[5];
this->RunSingle(M, N, K, O, G0, G1);
}
}
};
template <GemmSpecialization GemmSpec>
struct DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using CPermuteNumDims_G_M_O =
S<2, 1, 1>; // "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = float;
using CShuffleDataType = F16;
using CDataType = F16;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
// static constexpr auto GemmSpec = std::tuple_element_t<0, Tuple>::value;
using DeviceGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CPermuteNumDims_G_M_O,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
true>; // Masking
bool IsSupported(int M, int N, int K, int O)
{
auto gemm = DeviceGemmGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(nullptr),
static_cast<B0DataType*>(nullptr),
static_cast<B1DataType*>(nullptr),
static_cast<CDataType*>(nullptr),
M,
N,
K,
O,
0, // BatchCount
{0, 0, M, O}, // gs ms ns lengths
{0, O, 0, 1}, // gs ms ns strides
0, // StrideA
0, // StrideB0
0, // StrideB1
0, // BatchStrideA
0, // BatchStrideB0
0, // BatchStrideB1
PassThrough{}, // a_element_op
PassThrough{}, // b0_element_op
Scale{1.f}, // acc0_element_op
PassThrough{}, // b1_element_op
PassThrough{}); // c_element_op
return gemm.IsSupportedArgument(argument);
}
};
......@@ -131,19 +131,19 @@ TEST(TestBatchedGemmSoftmaxGemmInterface, GemmSpecializationSizeMatch)
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(Q, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MPadding>{}.IsSupported(P, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NPadding>{}.IsSupported(Q, P, Q, Q));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KPadding>{}.IsSupported(Q, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KPadding>{}.IsSupported(Q, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNPadding>{}.IsSupported(P, P, Q, Q));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKPadding>{}.IsSupported(P, Q, P, Q));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKPadding>{}.IsSupported(Q, P, P, Q));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(P, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKPadding>{}.IsSupported(P, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKPadding>{}.IsSupported(Q, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(P, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::OPadding>{}.IsSupported(Q, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MOPadding>{}.IsSupported(P, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NOPadding>{}.IsSupported(Q, P, Q, P));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KOPadding>{}.IsSupported(Q, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::KOPadding>{}.IsSupported(Q, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNOPadding>{}.IsSupported(P, P, Q, P));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKOPadding>{}.IsSupported(P, Q, P, P));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKOPadding>{}.IsSupported(Q, P, P, P));
// EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(P, P, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MKOPadding>{}.IsSupported(P, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::NKOPadding>{}.IsSupported(Q, P, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_TNTT_FP16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(P, P, P, P));
// clang-format on
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment