Commit e9047ab9 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'develop' into amd-develop

parents bc641634 a2969aa8
...@@ -2,8 +2,10 @@ add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_f ...@@ -2,8 +2,10 @@ add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_f
add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp) add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp) add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp) add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8.cpp)
target_link_libraries(client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_conv_operations)
target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_conv_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_conv_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_conv_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp16_comp_bf8_fp8 PRIVATE composable_kernel::device_conv_operations)
...@@ -85,7 +85,9 @@ template <ck::index_t NumDimSpatial, ...@@ -85,7 +85,9 @@ template <ck::index_t NumDimSpatial,
typename OutDataType, typename OutDataType,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
typename OutLayout> typename OutLayout,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool run_grouped_conv_bwd_weight( bool run_grouped_conv_bwd_weight(
const std::array<ck::index_t, NumDimSpatial + 3>& input_lengths, const std::array<ck::index_t, NumDimSpatial + 3>& input_lengths,
const std::array<ck::index_t, NumDimSpatial + 3>& input_strides, const std::array<ck::index_t, NumDimSpatial + 3>& input_strides,
...@@ -113,7 +115,9 @@ bool run_grouped_conv_bwd_weight( ...@@ -113,7 +115,9 @@ bool run_grouped_conv_bwd_weight(
OutDataType, OutDataType,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough>; PassThrough,
AComputeType,
BComputeType>;
// get device op instances // get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances(); DeviceOp>::GetInstances();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
using AComputeType = ck::bf8_t;
using BComputeType = ck::f8_t;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 8;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 128;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_lengths{G, N, C, Di, Hi, Wi};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> filter_lengths{G, K, C, Z, Y, X};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_lengths{G, N, K, Do, Ho, Wo};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_strides{
N * Di * Hi * Wi * C, Di* Hi* Wi* C, 1, Hi* Wi* C, Wi* C, C};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> weights_strides{
K * Z * Y * X * C, Z* Y* X* C, 1, Y* X* C, X* C, C};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_strides{
N * Do * Ho * Wo * K, Do* Ho* Wo* K, 1, Ho* Wo* K, Wo* K, K};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout,
AComputeType,
BComputeType>(input_lengths,
input_strides,
filter_lengths,
weights_strides,
output_lengths,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_elementwise_layernorm2d elementwise_layernorm2d.cpp) add_executable(client_elementwise_layernorm2d elementwise_layernorm2d.cpp)
target_link_libraries(client_elementwise_layernorm2d PRIVATE composable_kernel::device_operations) target_link_libraries(client_elementwise_layernorm2d PRIVATE composable_kernel::device_other_operations)
add_executable(client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp) add_executable(client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp)
add_executable(client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp) add_executable(client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp)
add_executable(client_batchnorm_infer_nhwc batchnorm_infer_nhwc.cpp) add_executable(client_batchnorm_infer_nhwc batchnorm_infer_nhwc.cpp)
target_link_libraries(client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_other_operations)
target_link_libraries(client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_other_operations)
target_link_libraries(client_batchnorm_infer_nhwc PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_infer_nhwc PRIVATE composable_kernel::device_other_operations)
add_executable(client_batchnorm_fwd_instance_id batchnorm_fwd_instance_id.cpp) add_executable(client_batchnorm_fwd_instance_id batchnorm_fwd_instance_id.cpp)
target_link_libraries(client_batchnorm_fwd_instance_id PRIVATE composable_kernel::device_operations) target_link_libraries(client_batchnorm_fwd_instance_id PRIVATE composable_kernel::device_other_operations)
add_executable(client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp) add_executable(client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp)
add_executable(client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp) add_executable(client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp)
target_link_libraries(client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_conv_operations)
target_link_libraries(client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations) target_link_libraries(client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_gemm_add_multiply gemm_add_multiply.cpp) add_executable(client_gemm_add_multiply gemm_add_multiply.cpp)
target_link_libraries(client_gemm_add_multiply PRIVATE composable_kernel::device_operations) target_link_libraries(client_gemm_add_multiply PRIVATE composable_kernel::device_gemm_operations)
\ No newline at end of file \ No newline at end of file
add_executable(client_reduce_nhwc_c reduce_nhwc_c.cpp) add_executable(client_reduce_nhwc_c reduce_nhwc_c.cpp)
target_link_libraries(client_reduce_nhwc_c PRIVATE composable_kernel::device_operations) target_link_libraries(client_reduce_nhwc_c PRIVATE composable_kernel::device_reduction_operations)
if((DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES) if((DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp) add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp)
target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_conv_operations)
endif() endif()
if((DTYPES MATCHES "fp8") OR NOT DEFINED DTYPES) if((DTYPES MATCHES "fp8") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp) add_executable(client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp)
target_link_libraries(client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_operations) target_link_libraries(client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_conv_operations)
endif() endif()
if((DTYPES MATCHES "fp32") OR NOT DEFINED DTYPES) if((DTYPES MATCHES "fp32") OR NOT DEFINED DTYPES)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp) add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations) target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_conv_operations)
endif() endif()
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp" #include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp" #include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...@@ -174,19 +174,19 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD ...@@ -174,19 +174,19 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths); std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size; std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial, using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout, InLayout,
WeiLayout, WeiLayout,
ck::Tuple<>, ck::Tuple<>,
OutLayout, OutLayout,
InDataType, InDataType,
WeiDataType, WeiDataType,
ck::Tuple<>, ck::Tuple<>,
OutDataType, OutDataType,
PassThrough, PassThrough,
PassThrough, PassThrough,
PassThrough, PassThrough,
ComputeType>; ComputeType>;
// get device op instances // get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory< const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances(); DeviceOp>::GetInstances();
......
add_executable(client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp) add_executable(client_grouped_gemm_fastgelu grouped_gemm_fastgelu.cpp)
target_link_libraries(client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_gemm_fastgelu PRIVATE composable_kernel::device_gemm_operations)
\ No newline at end of file \ No newline at end of file
add_executable(client_groupnorm_swish groupnorm_swish.cpp) add_executable(client_groupnorm_swish groupnorm_swish.cpp)
target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_operations) target_link_libraries(client_groupnorm_swish PRIVATE composable_kernel::device_other_operations)
add_executable(client_max_pool2d_fwd max_pool2d_fwd.cpp) add_executable(client_max_pool2d_fwd max_pool2d_fwd.cpp)
target_link_libraries(client_max_pool2d_fwd PRIVATE composable_kernel::device_operations) target_link_libraries(client_max_pool2d_fwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_max_pool2d_bwd max_pool2d_bwd.cpp) add_executable(client_max_pool2d_bwd max_pool2d_bwd.cpp)
target_link_libraries(client_max_pool2d_bwd PRIVATE composable_kernel::device_operations) target_link_libraries(client_max_pool2d_bwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_avg_pool3d_fwd avg_pool3d_fwd.cpp) add_executable(client_avg_pool3d_fwd avg_pool3d_fwd.cpp)
target_link_libraries(client_avg_pool3d_fwd PRIVATE composable_kernel::device_operations) target_link_libraries(client_avg_pool3d_fwd PRIVATE composable_kernel::device_other_operations)
add_executable(client_avg_pool3d_bwd avg_pool3d_bwd.cpp) add_executable(client_avg_pool3d_bwd avg_pool3d_bwd.cpp)
target_link_libraries(client_avg_pool3d_bwd PRIVATE composable_kernel::device_operations) target_link_libraries(client_avg_pool3d_bwd PRIVATE composable_kernel::device_other_operations)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES) if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
add_executable(client_splitK_gemm splitK_gemm_fp16_f8.cpp) add_executable(client_splitK_gemm splitK_gemm_fp16_f8.cpp)
target_link_libraries(client_splitK_gemm PRIVATE composable_kernel::device_operations) target_link_libraries(client_splitK_gemm PRIVATE composable_kernel::device_gemm_operations)
endif() endif()
add_executable(client_grouped_gemm_fixed_nk_bias_fp16 grouped_gemm_fixed_nk_bias_fp16.cpp) add_executable(client_grouped_gemm_fixed_nk_bias_fp16 grouped_gemm_fixed_nk_bias_fp16.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_gemm_fixed_nk_bias_fp16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_fixed_nk_fp16 grouped_gemm_fixed_nk_fp16.cpp) add_executable(client_grouped_gemm_fixed_nk_fp16 grouped_gemm_fixed_nk_fp16.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_gemm_fixed_nk_fp16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_fixed_nk_fp8 grouped_gemm_fixed_nk_fp8.cpp) add_executable(client_grouped_gemm_fixed_nk_fp8 grouped_gemm_fixed_nk_fp8.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp) add_executable(client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_image_to_column image_to_column.cpp) add_executable(client_image_to_column image_to_column.cpp)
target_link_libraries(client_image_to_column PRIVATE composable_kernel::device_operations) target_link_libraries(client_image_to_column PRIVATE composable_kernel::device_other_operations)
add_executable(client_column_to_image column_to_image.cpp) add_executable(client_column_to_image column_to_image.cpp)
target_link_libraries(client_column_to_image PRIVATE composable_kernel::device_operations) target_link_libraries(client_column_to_image PRIVATE composable_kernel::device_other_operations)
add_executable(client_elementwise_transpose3d elementwise_transpose_3d.cpp)
target_link_libraries(client_elementwise_transpose3d PRIVATE composable_kernel::device_other_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
const int N = 16;
const int C = 8;
const int D = 8;
const int H = 8;
const int W = 8;
std::vector<std::size_t> ncdhw = {N, C, D, H, W};
std::vector<std::size_t> nchwd = {N, C, H, W, D};
auto size = N * C * D * H * W;
std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
std::array<ck::index_t, 5> a_strides = {C * D * H * W, H * W, W, 1, D * H * W}; // N, C, D, H, W
std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, C, H, W, D
SimpleDeviceMem a_dev_buf(sizeof(ADataType) * size);
SimpleDeviceMem b_dev_buf(sizeof(BDataType) * size);
std::array<const void*, 1> input = {a_dev_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_dev_buf.GetDeviceBuffer()};
using DeviceElementwisePermuteInstance = ck::tensor_operation::device::
DeviceElementwise<ck::Tuple<ADataType>, ck::Tuple<BDataType>, PassThrough, 5>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceElementwisePermuteInstance>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte =
sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment