Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e845ad4c
Commit
e845ad4c
authored
Jul 15, 2023
by
Jing Zhang
Browse files
init commit for device args
parent
0a9ccef6
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
306 additions
and
113 deletions
+306
-113
example/15_grouped_gemm/grouped_gemm_xdl_splitk_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_splitk_fp16.cpp
+205
-4
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
...u/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
+99
-107
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
+2
-2
No files found.
example/15_grouped_gemm/grouped_gemm_xdl_splitk_fp16.cpp
View file @
e845ad4c
...
@@ -33,9 +33,9 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -33,9 +33,9 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using
ADataType
=
F16
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F
16
;
using
CShuffleDataType
=
F
32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F
16
;
using
EDataType
=
F
32
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Col
;
...
@@ -54,10 +54,211 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemmXdlSpl
...
@@ -54,10 +54,211 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemmXdlSpl
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
4
>
;
// clang-format on
// clang-format on
#include "run_grouped_gemm_example.inc"
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
int
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
problem_size
.
Ms
[
i
];
int
N
=
problem_size
.
Ns
[
i
];
int
K
=
problem_size
.
Ks
[
i
];
int
stride_A
=
problem_size
.
stride_As
[
i
];
int
stride_B
=
problem_size
.
stride_Bs
[
i
];
int
stride_C
=
problem_size
.
stride_Cs
[
i
];
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
{}});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
p_Ds
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_Ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
gemm
.
SetKBatchSize
(
argument
,
8
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp
View file @
e845ad4c
...
@@ -36,6 +36,7 @@ __global__ void
...
@@ -36,6 +36,7 @@ __global__ void
#endif
#endif
kernel_grouped_gemm_xdl_splitk
(
const
void
*
gemm_desc_const
,
kernel_grouped_gemm_xdl_splitk
(
const
void
*
gemm_desc_const
,
const
index_t
group_count
,
const
index_t
group_count
,
const
index_t
block_size
,
const
index_t
k_batch
)
const
index_t
k_batch
)
{
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
...
@@ -43,50 +44,25 @@ __global__ void
...
@@ -43,50 +44,25 @@ __global__ void
constexpr
index_t
shared_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
();
constexpr
index_t
shared_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
();
__shared__
uint8_t
p_shared
[
shared_size
];
__shared__
uint8_t
p_shared
[
shared_size
];
ignore
=
group_count
;
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
gemm_desc_const
);
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
gemm_desc_const
);
const
index_t
block_id
=
get_block_1d_id
();
const
index_t
block_id
=
get_block_1d_id
();
#if 0
const
index_t
group_id
=
block_id
/
block_size
;
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while((!(block_id >= gemm_desc_ptr[group_id].block_start_ &&
block_id < gemm_desc_ptr[group_id].block_end_)) &&
left <= right)
{
if(block_id < gemm_desc_ptr[group_id].block_start_)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
#else
if
(
block_id
>=
gemm_desc_ptr
[
group_count
-
1
].
block_end_
)
return
;
index_t
group_id
=
0
;
const
auto
M
=
gemm_desc_ptr
[
group_id
].
M
;
for
(;
group_id
<
group_count
;
group_id
++
)
const
auto
N
=
gemm_desc_ptr
[
group_id
].
N
;
{
const
auto
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
block_id
>=
gemm_desc_ptr
[
group_id
].
block_start_
&&
block_id
<
gemm_desc_ptr
[
group_id
].
block_end_
)
if
(
M
==
0
||
N
==
0
||
K
==
0
)
{
return
;
break
;
}
}
#endif
const
auto
p_a_grid
=
reinterpret_cast
<
const
FloatA
*>
(
gemm_desc_ptr
[
group_id
].
p_a_grid
);
const
auto
p_a_grid
=
reinterpret_cast
<
const
FloatA
*>
(
gemm_desc_ptr
[
group_id
].
p_a_grid
);
const
auto
p_b_grid
=
reinterpret_cast
<
const
FloatB
*>
(
gemm_desc_ptr
[
group_id
].
p_b_grid
);
const
auto
p_b_grid
=
reinterpret_cast
<
const
FloatB
*>
(
gemm_desc_ptr
[
group_id
].
p_b_grid
);
const
auto
p_c_grid
=
reinterpret_cast
<
FloatC
*>
(
gemm_desc_ptr
[
group_id
].
p_c_grid
);
const
auto
p_c_grid
=
reinterpret_cast
<
FloatC
*>
(
gemm_desc_ptr
[
group_id
].
p_c_grid
);
const
auto
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
auto
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
auto
K
=
gemm_desc_ptr
[
group_id
].
K
;
const
auto
StrideA
=
gemm_desc_ptr
[
group_id
].
StrideA
;
const
auto
StrideA
=
gemm_desc_ptr
[
group_id
].
StrideA
;
const
auto
StrideB
=
gemm_desc_ptr
[
group_id
].
StrideB
;
const
auto
StrideB
=
gemm_desc_ptr
[
group_id
].
StrideB
;
const
auto
StrideC
=
gemm_desc_ptr
[
group_id
].
StrideC
;
const
auto
StrideC
=
gemm_desc_ptr
[
group_id
].
StrideC
;
...
@@ -108,7 +84,7 @@ __global__ void
...
@@ -108,7 +84,7 @@ __global__ void
const
auto
c_grid_desc_m_n
=
GridwiseGemm
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
);
const
auto
c_grid_desc_m_n
=
GridwiseGemm
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
);
const
auto
local_b2c_tile_map
=
Block2ETileMapKSplit
{
c_grid_desc_m_n
,
B2E_M01
,
k_batch
};
const
auto
local_b2c_tile_map
=
Block2ETileMapKSplit
{
c_grid_desc_m_n
,
B2E_M01
,
k_batch
};
const
auto
block_2_ctile_map
=
const
auto
block_2_ctile_map
=
GroupedGemmBlock2ETileMap
(
local_b2c_tile_map
,
gemm_desc_ptr
[
group_id
].
block_s
tart_
);
GroupedGemmBlock2ETileMap
(
local_b2c_tile_map
,
group_id
*
block_s
ize
);
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
>(
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
CGlobalMemoryDataOperation
>(
p_a_grid
,
p_a_grid
,
...
@@ -144,7 +120,7 @@ template <typename ALayout,
...
@@ -144,7 +120,7 @@ template <typename ALayout,
typename
DsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
ypename
BElementwiseOperation
,
t
ypename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumGemmKPrefetchStage
,
ck
::
index_t
NumGemmKPrefetchStage
,
...
@@ -414,84 +390,18 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
...
@@ -414,84 +390,18 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
index_t
StrideA
;
index_t
StrideA
;
index_t
StrideB
;
index_t
StrideB
;
index_t
StrideC
;
index_t
StrideC
;
//do not need after loop M implemented
index_t
block_start_
;
index_t
block_end_
;
};
};
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
float
Run
(
const
Argument
&
arg
,
const
void
*
gemm_descs_dev
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
{
std
::
vector
<
SimpleGemmArgument
>
simple_gemm_kernel_args_
;
using
GemmArgumentType
=
SimpleGemmArgument
;
simple_gemm_kernel_args_
.
reserve
(
arg
.
gemm_kernel_args_
.
size
());
index_t
K0
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
K0
;
index_t
K0
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
K0
;
bool
all_have_kbatch_gt_one
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
>
1
;
bool
all_have_kbatch_gt_one
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
>
1
;
bool
all_have_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
bool
all_have_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_kernel_args_
.
size
();
++
i
)
{
const
auto
&
karg
=
arg
.
gemm_kernel_args_
[
i
].
karg_
;
if
(
stream_config
.
log_level_
>
0
)
{
karg
.
Print
();
}
auto
kbatch
=
karg
.
k_batch
;
if
(
!
GridwiseGemm
::
CheckValidity
(
karg
))
{
std
::
ostringstream
err
;
err
<<
"Group id: "
<<
i
<<
" has invalid GridwiseGemm settings!"
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
K0
=
karg
.
K0
;
bool
not_all_have_main_k0_block_loop_same
=
all_have_main_k0_block_loop
xor
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
bool
not_all_have_kbatch_value_same
=
all_have_kbatch_gt_one
xor
(
kbatch
>
1
);
if
(
not_all_have_main_k0_block_loop_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same value for main_k0_block_loop! in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
not_all_have_kbatch_value_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same kbatch value (=1 or >1)! "
<<
"group ["
<<
i
<<
"], kbatch: "
<<
kbatch
<<
", group [0], kbatch: "
<<
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
<<
" in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
simple_gemm_kernel_args_
.
push_back
({
karg
.
p_a_grid
,
karg
.
p_b_grid
,
karg
.
p_c_grid
,
karg
.
M
,
karg
.
N
,
karg
.
K
,
karg
.
StrideA
,
karg
.
StrideB
,
karg
.
StrideC
,
arg
.
gemm_kernel_args_
[
i
].
block_start_
,
arg
.
gemm_kernel_args_
[
i
].
block_end_
});
}
using
GemmArgumentType
=
SimpleGemmArgument
;
hip_check_error
(
hipMemcpyWithStream
(
arg
.
p_workspace_
,
simple_gemm_kernel_args_
.
data
(),
simple_gemm_kernel_args_
.
size
()
*
sizeof
(
GemmArgumentType
),
hipMemcpyHostToDevice
,
stream_config
.
stream_id_
));
float
ave_time
=
0
;
float
ave_time
=
0
;
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
const
auto
Run
=
[
&
](
const
auto
&
kernel
)
{
...
@@ -510,8 +420,10 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
...
@@ -510,8 +420,10 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
dim3
(
arg
.
grid_size_
),
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
dim3
(
BlockSize
),
0
,
0
,
arg
.
p_workspace_
,
gemm_descs_dev
,
arg
.
gemm_kernel_args_
.
size
(),
arg
.
gemm_kernel_args_
.
size
(),
arg
.
gemm_kernel_args_
[
0
].
block_end_
-
arg
.
gemm_kernel_args_
[
0
].
block_start_
,
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
);
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
);
};
};
...
@@ -577,6 +489,86 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
...
@@ -577,6 +489,86 @@ struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemmSplitK<ALayo
return
ave_time
;
return
ave_time
;
}
}
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
std
::
vector
<
SimpleGemmArgument
>
simple_gemm_kernel_args_
;
simple_gemm_kernel_args_
.
reserve
(
arg
.
gemm_kernel_args_
.
size
());
index_t
K0
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
K0
;
bool
all_have_kbatch_gt_one
=
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
>
1
;
bool
all_have_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_kernel_args_
.
size
();
++
i
)
{
const
auto
&
karg
=
arg
.
gemm_kernel_args_
[
i
].
karg_
;
if
(
stream_config
.
log_level_
>
0
)
{
karg
.
Print
();
}
auto
kbatch
=
karg
.
k_batch
;
std
::
cout
<<
"Group id: "
<<
i
<<
" block_size: "
<<
arg
.
gemm_kernel_args_
[
i
].
block_end_
-
arg
.
gemm_kernel_args_
[
i
].
block_start_
<<
std
::
endl
;
if
(
!
GridwiseGemm
::
CheckValidity
(
karg
))
{
std
::
ostringstream
err
;
err
<<
"Group id: "
<<
i
<<
" has invalid GridwiseGemm settings!"
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
K0
=
karg
.
K0
;
bool
not_all_have_main_k0_block_loop_same
=
all_have_main_k0_block_loop
xor
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
bool
not_all_have_kbatch_value_same
=
all_have_kbatch_gt_one
xor
(
kbatch
>
1
);
if
(
not_all_have_main_k0_block_loop_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same value for main_k0_block_loop! in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
not_all_have_kbatch_value_same
)
{
std
::
ostringstream
err
;
err
<<
"Not all gemms have same kbatch value (=1 or >1)! "
<<
"group ["
<<
i
<<
"], kbatch: "
<<
kbatch
<<
", group [0], kbatch: "
<<
arg
.
gemm_kernel_args_
[
0
].
karg_
.
k_batch
<<
" in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
simple_gemm_kernel_args_
.
push_back
({
karg
.
p_a_grid
,
karg
.
p_b_grid
,
karg
.
p_c_grid
,
karg
.
M
,
karg
.
N
,
karg
.
K
,
karg
.
StrideA
,
karg
.
StrideB
,
karg
.
StrideC
});
}
using
GemmArgumentType
=
SimpleGemmArgument
;
hip_check_error
(
hipMemcpyWithStream
(
arg
.
p_workspace_
,
simple_gemm_kernel_args_
.
data
(),
simple_gemm_kernel_args_
.
size
()
*
sizeof
(
GemmArgumentType
),
hipMemcpyHostToDevice
,
stream_config
.
stream_id_
));
float
ave_time
=
Run
(
arg
,
arg
.
p_workspace_
,
stream_config
);
return
ave_time
;
}
// polymorphic
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
...
...
include/ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp
View file @
e845ad4c
...
@@ -271,7 +271,7 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
...
@@ -271,7 +271,7 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
{
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I0
),
MPerBlock
);
const
auto
M0
=
1
;
//
math::integer_divide_ceil(c_grid_desc_m_n.GetLength(I0), MPerBlock);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n
.
GetLength
(
I1
),
NPerBlock
);
const
index_t
grid_size
=
M0
*
N0
*
KSplit_
;
const
index_t
grid_size
=
M0
*
N0
*
KSplit_
;
...
@@ -284,7 +284,7 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
...
@@ -284,7 +284,7 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
{
{
auto
block_1d_id
=
idx_top
[
I0
];
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I0
),
MPerBlock
);
const
auto
M0
=
1
;
//
math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I0), MPerBlock);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
c_grid_desc_m_n_
.
GetLength
(
I1
),
NPerBlock
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KSplit_
);
// hide groups
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KSplit_
);
// hide groups
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment