Commit e730aeb7 authored by carlushuang's avatar carlushuang
Browse files

add profiler

parent 2f5ae075
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmStreamK : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t NumSKBlocks = 0) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmStreamKPtr = std::unique_ptr<DeviceGemmStreamK<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -10,7 +10,7 @@ ...@@ -10,7 +10,7 @@
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp" #include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_streamk.hpp"
#include "ck/host_utility/device_prop.hpp" #include "ck/host_utility/device_prop.hpp"
...@@ -58,15 +58,15 @@ template <typename ADataType, ...@@ -58,15 +58,15 @@ template <typename ADataType,
index_t CShuffleNRepeatPerShuffle, index_t CShuffleNRepeatPerShuffle,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock, typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXDL> index_t CBlockTransferScalarPerVector_NWaveNPerXDL>
struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout, struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
BLayout, BLayout,
CLayout, CLayout,
ADataType, ADataType,
BDataType, BDataType,
CDataType, CDataType,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation> CElementwiseOperation>
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{}; static constexpr auto I1 = Number<1>{};
...@@ -185,7 +185,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout, ...@@ -185,7 +185,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout,
index_t StrideC, index_t StrideC,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation) CElementwiseOperation,
index_t NumSKBlocks = 0)
{ {
const auto kernel = kernel_gemm_xdlops_streamk<GridwiseGemm>; const auto kernel = kernel_gemm_xdlops_streamk<GridwiseGemm>;
int occupancy, num_cu; int occupancy, num_cu;
...@@ -212,7 +213,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout, ...@@ -212,7 +213,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout,
StrideB, StrideB,
StrideC, StrideC,
static_cast<uint32_t>(num_cu), static_cast<uint32_t>(num_cu),
static_cast<uint32_t>(occupancy)}; static_cast<uint32_t>(occupancy),
static_cast<uint32_t>(NumSKBlocks)};
} }
static auto MakeInvoker() { return Invoker{}; } static auto MakeInvoker() { return Invoker{}; }
...@@ -229,7 +231,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout, ...@@ -229,7 +231,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout,
index_t StrideC, index_t StrideC,
AElementwiseOperation, AElementwiseOperation,
BElementwiseOperation, BElementwiseOperation,
CElementwiseOperation) override CElementwiseOperation,
index_t NumSKBlocks = 0) override
{ {
const auto kernel = kernel_gemm_xdlops_streamk<GridwiseGemm>; const auto kernel = kernel_gemm_xdlops_streamk<GridwiseGemm>;
int occupancy, num_cu; int occupancy, num_cu;
...@@ -256,7 +259,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout, ...@@ -256,7 +259,8 @@ struct DeviceGemmXdlStreamK : public DeviceGemm<ALayout,
StrideB, StrideB,
StrideC, StrideC,
static_cast<uint32_t>(num_cu), static_cast<uint32_t>(num_cu),
static_cast<uint32_t>(occupancy)); static_cast<uint32_t>(occupancy),
static_cast<uint32_t>(NumSKBlocks));
} }
// polymorphic // polymorphic
......
...@@ -671,8 +671,13 @@ struct BlockToCTileMap_GemmStreamK ...@@ -671,8 +671,13 @@ struct BlockToCTileMap_GemmStreamK
} }
// prefer construct on host // prefer construct on host
BlockToCTileMap_GemmStreamK( BlockToCTileMap_GemmStreamK(uint32_t m,
uint32_t m, uint32_t n, uint32_t k, uint32_t num_cu, uint32_t occupancy, uint32_t tile_swizzle_sub_m_factor = 8) uint32_t n,
uint32_t k,
uint32_t num_cu,
uint32_t occupancy,
uint32_t sk_blocks = 0,
uint32_t tile_swizzle_sub_m_factor = 8)
{ {
uint32_t num_tiles = uint32_t num_tiles =
math::integer_divide_ceil(m, MPerBlock) * math::integer_divide_ceil(n, NPerBlock); math::integer_divide_ceil(m, MPerBlock) * math::integer_divide_ceil(n, NPerBlock);
...@@ -771,6 +776,8 @@ struct BlockToCTileMap_GemmStreamK ...@@ -771,6 +776,8 @@ struct BlockToCTileMap_GemmStreamK
sk_num_blocks = 0; sk_num_blocks = 0;
} }
// give a chance to control num of sk blocks
sk_num_blocks = sk_blocks != 0 ? sk_blocks : sk_num_blocks;
sk_num_blocks = env_get_int("sk_num_blocks", sk_num_blocks); sk_num_blocks = env_get_int("sk_num_blocks", sk_num_blocks);
if(sk_num_blocks == 0) if(sk_num_blocks == 0)
...@@ -804,10 +811,15 @@ struct BlockToCTileMap_GemmStreamK ...@@ -804,10 +811,15 @@ struct BlockToCTileMap_GemmStreamK
} }
} }
n_tiles = MDiv(math::integer_divide_ceil(n, NPerBlock)); n_tiles = MDiv(math::integer_divide_ceil(n, NPerBlock));
tile_swizzle_sub_m_factor =
env_get_int("tile_swizzle_sub_m_factor", tile_swizzle_sub_m_factor);
tile_swizzle_sub_m = MDiv(tile_swizzle_sub_m_factor); tile_swizzle_sub_m = MDiv(tile_swizzle_sub_m_factor);
tile_swizzle_sub_m_rem = MDiv(math::integer_divide_ceil(m, MPerBlock) % tile_swizzle_sub_m_factor); tile_swizzle_sub_m_rem =
MDiv(math::integer_divide_ceil(m, MPerBlock) % tile_swizzle_sub_m_factor);
printf("cu:%d, occupancy:%d, grids:%d, num_tiles:%d, dp_tiles:%d, sk_num_big_blocks:%d, sk_num_blocks:%d, " printf("cu:%d, occupancy:%d, grids:%d, num_tiles:%d, dp_tiles:%d, sk_num_big_blocks:%d, "
"sk_num_blocks:%d, "
"sk_total_iters:%d, dp_start_block_idx:%d, dp_iters_per_block:%d, dp_num_blocks:%d, " "sk_total_iters:%d, dp_start_block_idx:%d, dp_iters_per_block:%d, dp_num_blocks:%d, "
"k_iters_per_tile:%d, k_iters_per_big_block:%d\n", "k_iters_per_tile:%d, k_iters_per_big_block:%d\n",
num_cu, num_cu,
...@@ -889,9 +901,10 @@ struct BlockToCTileMap_GemmStreamK ...@@ -889,9 +901,10 @@ struct BlockToCTileMap_GemmStreamK
uint32_t quo_sub_m, rem_sub_m; uint32_t quo_sub_m, rem_sub_m;
tile_swizzle_sub_m.divmod(m_tile_idx, quo_sub_m, rem_sub_m); tile_swizzle_sub_m.divmod(m_tile_idx, quo_sub_m, rem_sub_m);
const auto sub_m_adapt = (m_tile_idx < (m_tiles - tile_swizzle_sub_m_rem.get())) ? const auto sub_m_adapt = (m_tile_idx < (m_tiles - tile_swizzle_sub_m_rem.get()))
tile_swizzle_sub_m : tile_swizzle_sub_m_rem; ? tile_swizzle_sub_m
: tile_swizzle_sub_m_rem;
uint32_t m_tile_idx_sub0, m_tile_idx_sub1; uint32_t m_tile_idx_sub0, m_tile_idx_sub1;
tile_swizzle_sub_m.divmod(m_tile_idx, m_tile_idx_sub0, m_tile_idx_sub1); tile_swizzle_sub_m.divmod(m_tile_idx, m_tile_idx_sub0, m_tile_idx_sub1);
uint32_t tile_idx_local = n_tile_idx + m_tile_idx_sub1 * n_tiles.get(); uint32_t tile_idx_local = n_tile_idx + m_tile_idx_sub1 * n_tiles.get();
...@@ -899,7 +912,7 @@ struct BlockToCTileMap_GemmStreamK ...@@ -899,7 +912,7 @@ struct BlockToCTileMap_GemmStreamK
uint32_t m_tile_idx_with_adapt, n_tile_idx_with_adapt; uint32_t m_tile_idx_with_adapt, n_tile_idx_with_adapt;
sub_m_adapt.divmod(tile_idx_local, n_tile_idx_with_adapt, m_tile_idx_with_adapt); sub_m_adapt.divmod(tile_idx_local, n_tile_idx_with_adapt, m_tile_idx_with_adapt);
return make_tuple(m_tile_idx_with_adapt + m_tile_idx_sub0 * tile_swizzle_sub_m.get(), return make_tuple(m_tile_idx_with_adapt + m_tile_idx_sub0 * tile_swizzle_sub_m.get(),
n_tile_idx_with_adapt); n_tile_idx_with_adapt);
} }
}; };
......
...@@ -121,7 +121,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk ...@@ -121,7 +121,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
index_t StrideB_, index_t StrideB_,
index_t StrideC_, index_t StrideC_,
uint32_t num_cu, uint32_t num_cu,
uint32_t occupancy) uint32_t occupancy,
uint32_t num_sk_blocks_)
: p_a_grid(p_a_grid_), : p_a_grid(p_a_grid_),
p_b_grid(p_b_grid_), p_b_grid(p_b_grid_),
p_c_grid(p_c_grid_), p_c_grid(p_c_grid_),
...@@ -131,7 +132,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk ...@@ -131,7 +132,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
StrideA(StrideA_), StrideA(StrideA_),
StrideB(StrideB_), StrideB(StrideB_),
StrideC(StrideC_), StrideC(StrideC_),
block_mapping(M, N, K, num_cu, occupancy) block_mapping(M, N, K, num_cu, occupancy, num_sk_blocks_)
{ {
} }
...@@ -384,13 +385,13 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk ...@@ -384,13 +385,13 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
} }
// return block_id to C matrix tile idx (m0, n0, k_split) mapping // return block_id to C matrix tile idx (m0, n0, k_split) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap() // __host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap()
{ // {
return BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>(); // return BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>();
} // }
using CGridDesc_M_N = remove_cvref_t<decltype(MakeCGridDescriptor_M_N(1, 1, 1, 1, 1))>; using CGridDesc_M_N = remove_cvref_t<decltype(MakeCGridDescriptor_M_N(1, 1, 1, 1, 1))>;
using DefaultBlock2CTileMap = remove_cvref_t<decltype(MakeDefaultBlock2CTileMap())>; // using DefaultBlock2CTileMap = remove_cvref_t<decltype(MakeDefaultBlock2CTileMap())>;
__device__ static void Run(const Argument& karg, void* __restrict__ p_shared_block) __device__ static void Run(const Argument& karg, void* __restrict__ p_shared_block)
{ {
...@@ -474,7 +475,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk ...@@ -474,7 +475,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
block_mapping.get_block_itr(block_idx, iter_start, iter_end); block_mapping.get_block_itr(block_idx, iter_start, iter_end);
uint32_t total_iter_length = iter_end - iter_start; uint32_t total_iter_length = iter_end - iter_start;
// if(threadIdx.x == 0) // if(threadIdx.x == 0)
// printf("xxx bid:%d, is_sk_block:%d, is_dp_block:%d\n", static_cast<int>(blockIdx.x), is_sk_block, is_dp_block); // printf("xxx bid:%d, is_sk_block:%d, is_dp_block:%d\n", static_cast<int>(blockIdx.x),
// is_sk_block, is_dp_block);
if(!is_sk_block && !is_dp_block) if(!is_sk_block && !is_dp_block)
return; return;
...@@ -496,12 +498,13 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk ...@@ -496,12 +498,13 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_streamk
const index_t k0_block_data_idx_on_grid = const index_t k0_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(iter_offset * K0PerBlock); __builtin_amdgcn_readfirstlane(iter_offset * K0PerBlock);
// if(threadIdx.x == 0) // if(threadIdx.x == 0)
// printf("[%s], bid:%d, block_idx:%d, tile_idx:%d(%d, %d, %d), iter_start:%d(%d | %d), iter_end:%d, len:%d\n", // printf("[%s], bid:%d, block_idx:%d, tile_idx:%d(%d, %d, %d), iter_start:%d(%d |
// is_sk_block ? "sk_block" : (is_dp_block ? "dp_block" : "other "), // %d), iter_end:%d, len:%d\n",
// static_cast<int>(blockIdx.x), block_idx, tile_idx, m_block_data_idx_on_grid, // is_sk_block ? "sk_block" : (is_dp_block ? "dp_block" : "other "),
// n_block_data_idx_on_grid, k0_block_data_idx_on_grid, iter_end - // static_cast<int>(blockIdx.x), block_idx, tile_idx, m_block_data_idx_on_grid,
// current_iter_length, iter_offset, iter_start, iter_end, current_iter_length); // n_block_data_idx_on_grid, k0_block_data_idx_on_grid, iter_end -
// current_iter_length, iter_offset, iter_start, iter_end, current_iter_length);
// A matrix blockwise copy // A matrix blockwise copy
auto a_blockwise_copy = auto a_blockwise_copy =
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemmStreamK<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmStreamK<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceGemmStreamK<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#if 0
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<CDataType, float>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
#endif
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_gemm_streamk_instance
# device_gemm_xdl_streamk_f32_f32_f32_mk_kn_mn_instance.cpp
# device_gemm_xdl_streamk_f32_f32_f32_mk_nk_mn_instance.cpp
# device_gemm_xdl_streamk_f32_f32_f32_km_kn_mn_instance.cpp
# device_gemm_xdl_streamk_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instance.cpp
# device_gemm_xdl_streamk_f16_f16_f16_mk_nk_mn_instance.cpp
# device_gemm_xdl_streamk_f16_f16_f16_km_kn_mn_instance.cpp
# device_gemm_xdl_streamk_f16_f16_f16_km_nk_mn_instance.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr auto GemmMNPadding =
// ck::tensor_operation::device::GemmSpecialization::MNPadding;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off
//##################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//##################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//##################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 192, 4, 8, 32, 32, 1, 3, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 48, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 192, 64, 4, 8, 32, 32, 3, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 32, 192, 4, 8, 32, 32, 1, 3, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 24, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 192, 32, 4, 8, 32, 32, 3, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 32, 64, 4, 8, 32, 32, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 64, 32, 4, 8, 32, 32, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGemmXdlStreamK< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, PassThrough, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>
// clang-format on
>;
void add_device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<
DeviceGemmStreamK<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_streamk_f16_f16_f16_mk_kn_mn_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_streamk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_gemm_streamk_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
int NumSKBlocks = 0)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{0, 1});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-1, 1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceGemmStreamK<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// Run reference GEMM
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
NumSKBlocks);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_device_buf.SetZero();
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
if constexpr(is_same<CDataType, float>::value)
{
std::cout << "Best Perf for datatype = f32";
}
else if constexpr(is_same<CDataType, half_t>::value)
{
std::cout << "Best Perf for datatype = f16";
}
else if constexpr(is_same<CDataType, bhalf_t>::value)
{
std::cout << "Best Perf for datatype = bf16";
}
else if constexpr(is_same<CDataType, int8_t>::value)
{
std::cout << "Best Perf for datatype = int8";
}
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " ALayout = RowMajor";
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " ALayout = ColumnMajor";
}
if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
{
std::cout << " BLayout = RowMajor";
}
else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
{
std::cout << " BLayout = ColumnMajor";
}
std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
<< " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << best_ave_time
<< " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -3,6 +3,7 @@ set(PROFILER_SOURCES ...@@ -3,6 +3,7 @@ set(PROFILER_SOURCES
profiler.cpp profiler.cpp
profile_gemm.cpp profile_gemm.cpp
profile_gemm_splitk.cpp profile_gemm_splitk.cpp
profile_gemm_streamk.cpp
profile_gemm_bilinear.cpp profile_gemm_bilinear.cpp
profile_gemm_bias_add_reduce.cpp profile_gemm_bias_add_reduce.cpp
profile_gemm_add_add_fastgelu.cpp profile_gemm_add_add_fastgelu.cpp
...@@ -40,6 +41,7 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors) ...@@ -40,6 +41,7 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE utility)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_splitk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_gemm_streamk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
};
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
#define OP_NAME "gemm_streamk"
#define OP_DESC "StreamK GEMM"
int profile_gemm_streamk(int argc, char* argv[])
{
if(argc < 14)
{
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg6: print tensor value (0: no; 1: yes)\n");
printf("arg7: time kernel (0=no, 1=yes)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
printf("arg14: num_sk_blocks (optional)\n");
exit(1);
}
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
const int NumSKBlocks = argc >= 15 ? std::stoi(argv[14]) : 0;
using F32 = float;
using F16 = ck::half_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
auto profile = [&](auto a_type,
auto b_type,
auto acc_type,
auto c_type,
auto a_layout,
auto b_layout,
auto c_layout) {
using ADataType = decltype(a_type);
using BDataType = decltype(b_type);
using AccDataType = decltype(acc_type);
using CDataType = decltype(c_type);
using ALayout = decltype(a_layout);
using BLayout = decltype(b_layout);
using CLayout = decltype(c_layout);
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? N : M;
bool pass = ck::profiler::profile_gemm_streamk_impl<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(
do_verification,
init_method,
do_log,
time_kernel,
M,
N,
K,
(StrideA <= 0) ? DefaultStrideA : StrideA,
(StrideB <= 0) ? DefaultStrideB : StrideB,
(StrideC <= 0) ? DefaultStrideC : StrideC,
NumSKBlocks);
return pass ? 0 : 1;
};
if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F32{}, F32{}, F32{}, F32{}, Col{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Row{}, Row{});
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
return profile(F16{}, F16{}, F32{}, F16{}, Col{}, Col{}, Row{});
}
else
{
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_streamk);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment