Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e72c0c43
Commit
e72c0c43
authored
Mar 26, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
d714fa15
313bbea5
Changes
262
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
705 additions
and
84 deletions
+705
-84
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+23
-46
example/02_gemm_alpha_beta/gemm_xdl_alpha_beta.cpp
example/02_gemm_alpha_beta/gemm_xdl_alpha_beta.cpp
+5
-5
example/03_gemm_bias_relu/gemm_xdl_bias_relu.cpp
example/03_gemm_bias_relu/gemm_xdl_bias_relu.cpp
+2
-2
example/04_gemm_bias_relu_add/gemm_xdl_bias_relu_add.cpp
example/04_gemm_bias_relu_add/gemm_xdl_bias_relu_add.cpp
+3
-3
example/09_convnd_fwd/convnd_fwd_xdl.cpp
example/09_convnd_fwd/convnd_fwd_xdl.cpp
+17
-0
example/10_conv2d_bwd_data/conv2d_bwd_data_xdl.cpp
example/10_conv2d_bwd_data/conv2d_bwd_data_xdl.cpp
+4
-0
example/12_reduce/README.md
example/12_reduce/README.md
+1
-1
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+35
-20
example/13_pool2d_fwd/README.md
example/13_pool2d_fwd/README.md
+1
-1
example/13_pool2d_fwd/pool2d_fwd.cpp
example/13_pool2d_fwd/pool2d_fwd.cpp
+3
-2
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+1
-0
example/15_grouped_gemm/README.md
example/15_grouped_gemm/README.md
+58
-0
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+234
-0
example/16_gemm_reduce/CMakeLists.txt
example/16_gemm_reduce/CMakeLists.txt
+1
-0
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
+269
-0
example/CMakeLists.txt
example/CMakeLists.txt
+2
-0
include/ck/config.hpp
include/ck/config.hpp
+8
-2
include/ck/tensor_operation/gpu/device/conv_utils.hpp
include/ck/tensor_operation/gpu/device/conv_utils.hpp
+22
-0
include/ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp
...n/gpu/device/convolution_backward_data_specialization.hpp
+1
-1
include/ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp
...eration/gpu/device/convolution_forward_specialization.hpp
+15
-1
No files found.
example/01_gemm/gemm_xdl_fp16.cpp
View file @
e72c0c43
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
#include "device_tensor.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "gemm_specialization.hpp"
...
@@ -44,51 +45,12 @@ using CElementOp = ck::tensor_operation::element_wise::PassThrough;
...
@@ -44,51 +45,12 @@ using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// clang-format off
// clang-format off
#if 0
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| Num|
//######| | | | Type| Type| Type| DataType| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar| Prefetch|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// [256, 128, 4, 8], 1 stage, 2 occupancy
< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1, 1>;
#elif
1
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle
//######|AData| BData| CData| AccData| Shuffle| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| Type| Type| Type| Type| Data| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######| | | | | Type| | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
F16
,
F16
,
F16
,
F32
,
F16
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
8
>
;
#elif 0
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| Num|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar| Prefetch|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// [128, 144, 8, 8], 1 stage, 1 occupancy, bounded by LDS size
// 99 TFlops, 120 blocks (1024x2160x3840)
// 99 TFlops, 960 blocks (4096x4320x3840)
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
144
,
8
,
8
,
16
,
16
,
2
,
9
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
8
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
,
1
>
;
// [128, 144, 4, 8], 1 stage, 2 occupancy,
// 92 TFlops, 120 blocks (1024x2160x3840)
// 120 TFlops, 240 blocks (1024x4320x3840)
// 128 TFlops, 960 blocks (4096x4320x3840)
// < F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 144, 4, 8, 16, 16, 2, 9, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1, 1>;
// [ 64, 144, 8, 8], 1 stage, 2 occupancy/
// 96 TFlops, 240 blocks (1024x2160x3840)
// 96 TFlops, 480 blocks (1024x4320x3840)
// 99 TFlops,1920 blocks (4096x4320x3840)
// < F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 144, 8, 8, 16, 16, 1, 9, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 8, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1, 1>;
// [ 64, 144, 8, 8], 2 stage, 2 occupancy
// 93 TFlops
// < F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 144, 8, 8, 16, 16, 1, 9, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 8, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1, 2>;
// [ 64, 144, 4, 8], 1 stage, 2 occupancy
// 87 TFlops
// < F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 144, 4, 8, 16, 16, 1, 9, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1, 1>;
// [ 64, 144, 4, 8], 2 stage, 2 occupancy
// 85 TFlops
// < F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 144, 4, 8, 16, 16, 1, 9, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1, 2>;
#endif
// clang-format on
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
...
@@ -211,7 +173,22 @@ int main(int argc, char* argv[])
...
@@ -211,7 +173,22 @@ int main(int argc, char* argv[])
"not support this GEMM problem"
);
"not support this GEMM problem"
);
}
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
// warm up
invoker
.
Run
(
argument
);
// timing
KernelTimer
timer
;
timer
.
Start
();
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
invoker
.
Run
(
argument
);
}
timer
.
End
();
float
ave_time
=
timer
.
GetElapsedTime
()
/
nrepeat
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
num_btype
=
...
...
example/02_gemm_alpha_beta/gemm_xdl_alpha_beta.cpp
View file @
e72c0c43
...
@@ -157,9 +157,9 @@ int main(int argc, char* argv[])
...
@@ -157,9 +157,9 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
B
DataType
>
c0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
B
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
B
DataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
...
@@ -172,12 +172,12 @@ int main(int argc, char* argv[])
...
@@ -172,12 +172,12 @@ int main(int argc, char* argv[])
case
1
:
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B
DataType
>
{
-
5
,
5
});
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
C
DataType
>
{
-
5
,
5
});
break
;
break
;
default:
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B
DataType
>
{
-
0.5
,
0.5
});
c0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C
DataType
>
{
-
0.5
,
0.5
});
}
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
...
...
example/03_gemm_bias_relu/gemm_xdl_bias_relu.cpp
View file @
e72c0c43
...
@@ -139,8 +139,8 @@ int main(int argc, char* argv[])
...
@@ -139,8 +139,8 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
B
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
B
DataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
// c0_n[n]
// c0_n[n]
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
...
...
example/04_gemm_bias_relu_add/gemm_xdl_bias_relu_add.cpp
View file @
e72c0c43
...
@@ -141,15 +141,15 @@ int main(int argc, char* argv[])
...
@@ -141,15 +141,15 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
B
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
B
DataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
// c0_n[n]
// c0_n[n]
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
N
)}),
std
::
vector
<
std
::
size_t
>
({
1
})));
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
N
)}),
std
::
vector
<
std
::
size_t
>
({
1
})));
// c1_m_n[m ,n]
// c1_m_n[m ,n]
Tensor
<
B
DataType
>
c1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C
DataType
>
c1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
...
...
example/09_convnd_fwd/convnd_fwd_xdl.cpp
View file @
e72c0c43
...
@@ -84,6 +84,9 @@ DeviceConvFwdBasePtr GetConvInstance(int num_dim_spatial)
...
@@ -84,6 +84,9 @@ DeviceConvFwdBasePtr GetConvInstance(int num_dim_spatial)
{
{
switch
(
num_dim_spatial
)
switch
(
num_dim_spatial
)
{
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
3
>>
();
}
case
2
:
{
case
2
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
2
>>
();
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
2
>>
();
}
}
...
@@ -173,6 +176,9 @@ HostTensorDescriptor GetOutputHostTensorDescriptor(const std::vector<std::size_t
...
@@ -173,6 +176,9 @@ HostTensorDescriptor GetOutputHostTensorDescriptor(const std::vector<std::size_t
switch
(
num_dim_spatial
)
switch
(
num_dim_spatial
)
{
{
case
3
:
{
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
NDHWK
{});
}
case
2
:
{
case
2
:
{
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
NHWK
{});
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
NHWK
{});
}
}
...
@@ -192,6 +198,9 @@ HostTensorDescriptor GetFiltersHostTensorDescriptor(const std::vector<std::size_
...
@@ -192,6 +198,9 @@ HostTensorDescriptor GetFiltersHostTensorDescriptor(const std::vector<std::size_
switch
(
num_dim_spatial
)
switch
(
num_dim_spatial
)
{
{
case
3
:
{
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
KZYXC
{});
}
case
2
:
{
case
2
:
{
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
KYXC
{});
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
KYXC
{});
}
}
...
@@ -211,6 +220,9 @@ HostTensorDescriptor GetInputHostTensorDescriptor(const std::vector<std::size_t>
...
@@ -211,6 +220,9 @@ HostTensorDescriptor GetInputHostTensorDescriptor(const std::vector<std::size_t>
switch
(
num_dim_spatial
)
switch
(
num_dim_spatial
)
{
{
case
3
:
{
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
NDHWC
{});
}
case
2
:
{
case
2
:
{
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
NHWC
{});
return
ck
::
conv_util
::
GetHostTensorDescriptor
(
dims
,
tl
::
NHWC
{});
}
}
...
@@ -360,6 +372,11 @@ int main(int argc, char* argv[])
...
@@ -360,6 +372,11 @@ int main(int argc, char* argv[])
switch
(
num_dim_spatial
)
switch
(
num_dim_spatial
)
{
{
case
3
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
}
case
2
:
{
case
2
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
verify_f
(
ref_conv
);
verify_f
(
ref_conv
);
...
...
example/10_conv2d_bwd_data/conv2d_bwd_data_xdl.cpp
View file @
e72c0c43
...
@@ -180,6 +180,10 @@ int main(int argc, char* argv[])
...
@@ -180,6 +180,10 @@ int main(int argc, char* argv[])
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
// reset input to zero
in_n_c_hi_wi_device_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
0
});
in_device_buf
.
ToDevice
(
in_n_c_hi_wi_device_result
.
mData
.
data
());
// do GEMM
// do GEMM
auto
conv
=
DeviceConvBwdDataInstance
{};
auto
conv
=
DeviceConvBwdDataInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
invoker
=
conv
.
MakeInvoker
();
...
...
example/12_reduce/README.md
View file @
e72c0c43
...
@@ -37,7 +37,7 @@ cmake \
...
@@ -37,7 +37,7 @@ cmake \
```
bash
```
bash
# -D <xxx> : input 4-d tensor lengths
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=integer value, 2=decimal value)
#arg1: initialization (0=no init, 1=
single
integer value, 2=
scope integer value, 3=
decimal value)
#arg2: run kernel # of times (>1)
#arg2: run kernel # of times (>1)
./bin/reduce_blockwise
-D
16,64,32,960
-v
1 1 10
./bin/reduce_blockwise
-D
16,64,32,960
-v
1 1 10
```
```
...
...
example/12_reduce/reduce_blockwise.cpp
View file @
e72c0c43
...
@@ -13,7 +13,7 @@
...
@@ -13,7 +13,7 @@
#include "device_base.hpp"
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
#include "host_reduce_util.hpp"
#include "host_
generic_
reduction.hpp"
#include "host_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
#include "reduction_operator_mapping.hpp"
...
@@ -21,13 +21,13 @@
...
@@ -21,13 +21,13 @@
using
namespace
ck
;
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InDataType
=
half_float
::
half
;
using
InDataType
=
ck
::
half
_t
;
using
OutDataType
=
half_float
::
half
;
using
OutDataType
=
ck
::
half
_t
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
using
k
InDataType
=
ck
::
half
_t
;
using
Host
InDataType
=
half_float
::
half
;
using
k
OutDataType
=
ck
::
half
_t
;
using
Host
OutDataType
=
half_float
::
half
;
using
k
AccDataType
=
float
;
using
Host
AccDataType
=
float
;
constexpr
int
Rank
=
4
;
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
constexpr
int
NumReduceDim
=
3
;
...
@@ -43,9 +43,9 @@ using InElementwiseOperation =
...
@@ -43,9 +43,9 @@ using InElementwiseOperation =
using
AccElementwiseOperation
=
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstance
=
DeviceReduceBlockWise
<
k
InDataType
,
using
DeviceReduceInstance
=
DeviceReduceBlockWise
<
InDataType
,
k
AccDataType
,
AccDataType
,
k
OutDataType
,
OutDataType
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
ReduceOperation
,
ReduceOperation
,
...
@@ -135,6 +135,10 @@ class SimpleAppArgs
...
@@ -135,6 +135,10 @@ class SimpleAppArgs
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
"comparing with the host-based reduction"
<<
std
::
endl
;
<<
std
::
endl
;
std
::
cout
<<
"Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- number of repeats to run the kernel"
<<
std
::
endl
;
};
};
int
processArgs
(
int
argc
,
char
*
argv
[])
int
processArgs
(
int
argc
,
char
*
argv
[])
...
@@ -263,20 +267,21 @@ int main(int argc, char* argv[])
...
@@ -263,20 +267,21 @@ int main(int argc, char* argv[])
{
{
switch
(
args
.
init_method
)
switch
(
args
.
init_method
)
{
{
case
0
:
case
0
:
break
;
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{},
num_thread
);
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{},
num_thread
);
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
},
num_thread
);
break
;
break
;
case
1
:
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
break
;
break
;
default:
default:
in
.
GenerateTensorValue
(
GeneratorTensor_
2
<
InDataType
>
{
1
,
5
},
num_thread
);
in
.
GenerateTensorValue
(
GeneratorTensor_
3
<
InDataType
>
{
-
5.0
,
5
.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_
2
<
InDataType
>
{
1
,
5
},
num_thread
);
out_ref
.
GenerateTensorValue
(
GeneratorTensor_
3
<
InDataType
>
{
-
5.0
,
5
.0
},
num_thread
);
}
}
if
(
beta
!=
0.0
f
)
if
(
beta
!=
0.0
f
)
...
@@ -293,17 +298,27 @@ int main(int argc, char* argv[])
...
@@ -293,17 +298,27 @@ int main(int argc, char* argv[])
if
(
beta
!=
0.0
f
)
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
out_dev
.
ToDevice
(
out
.
mData
.
data
());
size_t
indicesSizeInBytes
=
NeedIndices
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int
)
:
0
;
size_t
indicesSizeInBytes
=
NeedIndices
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int
32_t
)
:
0
;
DeviceMem
out_indices_dev
(
indicesSizeInBytes
);
DeviceMem
out_indices_dev
(
indicesSizeInBytes
);
if
(
args
.
do_verification
)
if
(
args
.
do_verification
)
{
{
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOpId
,
PropagateNan
,
NeedIndices
>
ReductionHost
<
HostInDataType
,
HostAccDataType
,
HostOutDataType
,
ReduceOpId
,
Rank
,
NumReduceDim
,
PropagateNan
,
NeedIndices
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
invariantDims
,
reduceDims
);
hostReduce
.
Run
(
hostReduce
.
Run
(
alpha
,
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
());
reinterpret_cast
<
const
HostInDataType
*>
(
in
.
mData
.
data
()),
beta
,
reinterpret_cast
<
HostOutDataType
*>
(
out_ref
.
mData
.
data
()),
out_indices_ref
.
mData
.
data
());
};
};
const
auto
i_inLengths
=
to_int_vector
(
args
.
inLengths
);
const
auto
i_inLengths
=
to_int_vector
(
args
.
inLengths
);
...
@@ -313,7 +328,7 @@ int main(int argc, char* argv[])
...
@@ -313,7 +328,7 @@ int main(int argc, char* argv[])
auto
reduce
=
DeviceReduceInstance
{};
auto
reduce
=
DeviceReduceInstance
{};
auto
wsSizeInBytes
=
reduce
.
GetWorkspaceSizeInBytes
(
i_inLengths
);
auto
wsSizeInBytes
=
reduce
.
GetWorkspaceSizeInBytes
(
i_inLengths
,
reduceDims
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
...
...
example/13_pool2d_fwd/README.md
View file @
e72c0c43
...
@@ -36,7 +36,7 @@ cmake \
...
@@ -36,7 +36,7 @@ cmake \
## Run ```pool2d_fwd```
## Run ```pool2d_fwd```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=
single
integer value, 2=
scope integer value, 3=
decimal value)
#arg3: run kernel # of times (>1)
#arg3: run kernel # of times (>1)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./example/pool2d_fwd 1 1 10
./example/pool2d_fwd 1 1 10
...
...
example/13_pool2d_fwd/pool2d_fwd.cpp
View file @
e72c0c43
...
@@ -236,8 +236,9 @@ int main(int argc, char* argv[])
...
@@ -236,8 +236,9 @@ int main(int argc, char* argv[])
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
break
;
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
case
2
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
});
}
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
...
...
example/15_grouped_gemm/CMakeLists.txt
0 → 100644
View file @
e72c0c43
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
example/15_grouped_gemm/README.md
0 → 100644
View file @
e72c0c43
# Instructions for ```grouped_gemm_xdl``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```grouped_gemm_xdl```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
example_grouped_gemm_xdl_fp16
```
## Run ```grouped_gemm_xdl```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
./bin/example_grouped_gemm_xdl_fp16 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
gemm[0] a_m_k: dim 2, lengths {256, 64}, strides {64, 1} b_k_n: dim 2, lengths {64, 128}, strides {1, 64} c_m_n: dim 2, lengths {256, 128}, strides {128, 1}
gemm[1] a_m_k: dim 2, lengths {512, 128}, strides {128, 1} b_k_n: dim 2, lengths {128, 256}, strides {1, 128} c_m_n: dim 2, lengths {512, 256}, strides {256, 1}
gemm[2] a_m_k: dim 2, lengths {768, 192}, strides {192, 1} b_k_n: dim 2, lengths {192, 384}, strides {1, 192} c_m_n: dim 2, lengths {768, 384}, strides {384, 1}
gemm[3] a_m_k: dim 2, lengths {1024, 256}, strides {256, 1} b_k_n: dim 2, lengths {256, 512}, strides {1, 256} c_m_n: dim 2, lengths {1024, 512}, strides {512, 1}
group: 0 arg.a_grid_desc_k0_m_k1_{8, 256, 8}, arg.b_grid_desc_k0_n_k1_{8, 128, 8}, arg.c_grid_desc_m_n_{ 256, 128}
group: 1 arg.a_grid_desc_k0_m_k1_{16, 512, 8}, arg.b_grid_desc_k0_n_k1_{16, 256, 8}, arg.c_grid_desc_m_n_{ 512, 256}
group: 2 arg.a_grid_desc_k0_m_k1_{24, 768, 8}, arg.b_grid_desc_k0_n_k1_{24, 384, 8}, arg.c_grid_desc_m_n_{ 768, 384}
group: 3 arg.a_grid_desc_k0_m_k1_{32, 1024, 8}, arg.b_grid_desc_k0_n_k1_{32, 512, 8}, arg.c_grid_desc_m_n_{ 1024, 512}
launch_and_time_kernel: grid_dim {30, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 0.037887 ms, 11.0706 TFlops, 90.8132 GB/s, DeviceGroupedGemmXdl<256, 256, 128, 4, 8, 32, 32, 4, 2>
```
example/15_grouped_gemm/grouped_gemm_xdl_fp16.cpp
0 → 100644
View file @
e72c0c43
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_grouped_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// static constexpr auto GemmMNPadding =
// ck::tensor_operation::device::GemmSpecialization_t::MNPadding;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| Num|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar| Prefetch|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
exit
(
0
);
}
int
group_count
=
4
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmShape
>
gemm_shapes
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
gemm_shapes
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
gemm_shapes
.
push_back
({
M
,
N
,
K
,
K
,
K
,
N
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
StrideA
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideB
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_shapes
[
i
].
M
*
gemm_shapes
[
i
].
K
*
gemm_shapes
[
i
].
N
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
CDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpace
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpace
()));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSpace
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_c
,
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
check_error
(
c_host_tensors
[
i
],
c_device_tensors
[
i
]);
}
}
return
0
;
}
example/16_gemm_reduce/CMakeLists.txt
0 → 100644
View file @
e72c0c43
add_example_executable
(
example_gemm_reduce_xdl_fp16 gemm_reduce_xdl_fp16.cpp
)
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
0 → 100644
View file @
e72c0c43
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
DDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
D1ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D0ReduceOp
,
D1ReduceOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
1
;
int
init_method
=
1
;
int
nrepeat
=
5
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m: "
<<
d0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m: "
<<
d1_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_m_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// warm up
invoker
.
Run
(
argument
);
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker
.
Run
(
argument
);
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
float
ave_time
=
total_time
/
nrepeat
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
d0_device_buf
.
FromDevice
(
d0_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_m_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
GetReduceZeroValue
();
float
d1_acc
=
d1_reduce_op
.
GetReduceZeroValue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
d0_reduce_op
.
Reduce
(
d0_acc
,
c_m_n_host_result
(
m
,
n
));
d1_reduce_op
.
Reduce
(
d1_acc
,
c_m_n_host_result
(
m
,
n
));
}
d0_m_host_result
(
m
)
=
d0_acc
;
d1_m_host_result
(
m
)
=
d1_acc
;
}
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
check_error
(
d0_m_host_result
,
d0_m_device_result
);
check_error
(
d1_m_host_result
,
d1_m_device_result
);
}
return
0
;
}
example/CMakeLists.txt
View file @
e72c0c43
...
@@ -39,3 +39,5 @@ add_subdirectory(11_conv2d_bwd_wgt)
...
@@ -39,3 +39,5 @@ add_subdirectory(11_conv2d_bwd_wgt)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
14_gemm_xdl_requant_relu_requant
)
add_subdirectory
(
14_gemm_xdl_requant_relu_requant
)
add_subdirectory
(
15_grouped_gemm
)
add_subdirectory
(
16_gemm_reduce
)
include/ck/config.hpp
View file @
e72c0c43
...
@@ -157,16 +157,22 @@
...
@@ -157,16 +157,22 @@
#define CK_WORKAROUND_SWDEV_325164 1
#define CK_WORKAROUND_SWDEV_325164 1
#endif
#endif
// workaround for verification failure ConvNd forward
// https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/135
#ifndef CK_WORKAROUND_GITHUB_135
#define CK_WORKAROUND_GITHUB_135 1
#endif
namespace
ck
{
namespace
ck
{
enum
InMemoryDataOperationEnum_t
enum
struct
InMemoryDataOperationEnum_t
{
{
Set
,
Set
,
AtomicAdd
,
AtomicAdd
,
Add
Add
};
};
enum
ActivTypeEnum_t
enum
struct
ActivTypeEnum_t
{
{
None
,
None
,
LeakyRelu
,
LeakyRelu
,
...
...
include/ck/tensor_operation/gpu/device/conv_utils.hpp
View file @
e72c0c43
...
@@ -186,6 +186,28 @@ HostTensorDescriptor GetHostTensorDescriptor(const std::vector<std::size_t>& dim
...
@@ -186,6 +186,28 @@ HostTensorDescriptor GetHostTensorDescriptor(const std::vector<std::size_t>& dim
return
HostTensorDescriptor
(
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
],
1
,
dims
[
3
]
*
C
,
C
});
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
],
1
,
dims
[
3
]
*
C
,
C
});
}
}
// 3D
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NCDHW
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KCZYX
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NKDHW
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
]
*
dims
[
4
],
dims
[
2
]
*
dims
[
3
]
*
dims
[
4
],
dims
[
3
]
*
dims
[
4
],
dims
[
4
],
1
});
}
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWK
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
]
*
dims
[
4
],
1
,
C
*
dims
[
3
]
*
dims
[
4
],
C
*
dims
[
4
],
C
});
}
std
::
stringstream
err_msg
;
std
::
stringstream
err_msg
;
err_msg
<<
"Unsupported data layout provided: "
<<
layout
<<
"!"
;
err_msg
<<
"Unsupported data layout provided: "
<<
layout
<<
"!"
;
...
...
include/ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp
View file @
e72c0c43
...
@@ -5,7 +5,7 @@ namespace ck {
...
@@ -5,7 +5,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
enum
ConvolutionBackwardDataSpecialization_t
enum
struct
ConvolutionBackwardDataSpecialization_t
{
{
Default
,
Default
,
Filter1x1Stride1Pad0
,
Filter1x1Stride1Pad0
,
...
...
include/ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp
View file @
e72c0c43
#ifndef CONVOLUTION_FORWARD_SPECIALIZATION
#ifndef CONVOLUTION_FORWARD_SPECIALIZATION
#define CONVOLUTION_FORWARD_SPECIALIZATION
#define CONVOLUTION_FORWARD_SPECIALIZATION
#include <string>
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
enum
ConvolutionForwardSpecialization_t
enum
struct
ConvolutionForwardSpecialization_t
{
{
Default
,
Default
,
Filter1x1Pad0
,
Filter1x1Pad0
,
...
@@ -13,6 +15,18 @@ enum ConvolutionForwardSpecialization_t
...
@@ -13,6 +15,18 @@ enum ConvolutionForwardSpecialization_t
OddC
,
OddC
,
};
};
inline
std
::
string
getConvFwdSpecializationStr
(
const
ConvolutionForwardSpecialization_t
&
s
)
{
switch
(
s
)
{
case
ConvolutionForwardSpecialization_t
::
Default
:
return
"Default"
;
case
ConvolutionForwardSpecialization_t
::
Filter1x1Pad0
:
return
"Filter1x1Pad0"
;
case
ConvolutionForwardSpecialization_t
::
Filter1x1Stride1Pad0
:
return
"Filter1x1Stride1Pad0"
;
case
ConvolutionForwardSpecialization_t
::
OddC
:
return
"OddC"
;
default:
return
"Unrecognized specialization!"
;
}
}
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
...
...
Prev
1
2
3
4
5
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment