Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e6593a76
Commit
e6593a76
authored
Sep 25, 2023
by
Bartlomiej Wroblewski
Browse files
Move using statements from instances to a common file
parent
c84d6f43
Changes
57
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
15 additions
and
130 deletions
+15
-130
library/include/ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp
..._instance/gpu/contraction/device_contraction_instance.hpp
+15
-0
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
...shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
...l_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
..._c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
...l_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
...l_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance.cpp
...l_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance.cpp
...l_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance.cpp
+0
-7
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
+0
-6
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
+0
-6
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
+0
-6
No files found.
library/include/ck/library/tensor_operation_instance/gpu/contraction/device_contraction_instance.hpp
View file @
e6593a76
...
@@ -13,6 +13,21 @@ namespace tensor_operation {
...
@@ -13,6 +13,21 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F64
=
double
;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
BF16_Tuple
=
ck
::
Tuple
<
BF16
>
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
F64_Tuple
=
ck
::
Tuple
<
F64
>
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
BF16_Tuple
=
ck
::
Tuple
<
BF16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_kknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
BF16_Tuple
=
ck
::
Tuple
<
BF16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_knnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
BF16_Tuple
=
ck
::
Tuple
<
BF16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
BF16_Tuple
=
ck
::
Tuple
<
BF16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_bf16_bf16_bf16_bf16_compute_f32_mnnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_kknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_knnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F16_Tuple
=
ck
::
Tuple
<
F16
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f16_f16_f16_f16_compute_f32_mnnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_kknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_knnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_bf16_mnnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_kknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_knnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance.cpp
View file @
e6593a76
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
...
@@ -19,13 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/n/n/n are the fast changing dimension for A/B/D/E
// m/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_compute_f16_mnnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
View file @
e6593a76
...
@@ -19,12 +19,6 @@ namespace tensor_operation {
...
@@ -19,12 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/k/n/n are the fast changing dimension for A/B/D/E
// k/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
View file @
e6593a76
...
@@ -19,12 +19,6 @@ namespace tensor_operation {
...
@@ -19,12 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// k/n/n/n are the fast changing dimension for A/B/D/E
// k/n/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance
=
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
View file @
e6593a76
...
@@ -19,12 +19,6 @@ namespace tensor_operation {
...
@@ -19,12 +19,6 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
using
F32
=
float
;
using
F32_Tuple
=
ck
::
Tuple
<
F32
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + D[m0, m1, n0, n1] = E[m0, m1, n0, n1]
// m/k/n/n are the fast changing dimension for A/B/D/E
// m/k/n/n are the fast changing dimension for A/B/D/E
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance
=
using
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance
=
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment