Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
e521823c
Unverified
Commit
e521823c
authored
Dec 01, 2023
by
arai713
Committed by
GitHub
Dec 01, 2023
Browse files
Merge branch 'develop' into hip_tensor_permute
parents
adce1006
c7d5c772
Changes
209
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2496 additions
and
1145 deletions
+2496
-1145
include/ck/host_utility/kernel_launch.hpp
include/ck/host_utility/kernel_launch.hpp
+6
-3
include/ck/stream_config.hpp
include/ck/stream_config.hpp
+2
-0
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_direct_load.hpp
.../block/thread_group_tensor_slice_transfer_direct_load.hpp
+314
-0
include/ck/tensor_operation/gpu/device/device_base.hpp
include/ck/tensor_operation/gpu/device/device_base.hpp
+3
-1
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
...ation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
+132
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
...eration/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
+16
-81
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp
...ration/gpu/device/impl/device_batchnorm_backward_impl.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl.hpp
...eration/gpu/device/impl/device_batchnorm_forward_impl.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl_obsolete.hpp
...pu/device/impl/device_batchnorm_forward_impl_obsolete.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp
..._operation/gpu/device/impl/device_elementwise_3d_impl.hpp
+7
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
...ce/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
...l/device_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
+414
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp
.../device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp
+392
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
...sor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
.../device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+13
-13
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
...mpl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
+1109
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
...e_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
+3
-3
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
...impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
+13
-13
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
.../impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+52
-1024
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
...tion/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
+5
-2
No files found.
include/ck/host_utility/kernel_launch.hpp
View file @
e521823c
...
...
@@ -33,10 +33,13 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
printf
(
"Warm up 1 time
\n
"
);
#endif
// warm up
kernel
<<<
grid_dim
,
block_dim
,
lds_byte
,
stream_config
.
stream_id_
>>>
(
args
...);
hip_check_error
(
hipGetLastError
());
for
(
int
i
=
0
;
i
<
stream_config
.
cold_niters_
;
++
i
)
{
kernel
<<<
grid_dim
,
block_dim
,
lds_byte
,
stream_config
.
stream_id_
>>>
(
args
...);
hip_check_error
(
hipGetLastError
());
}
const
int
nrepeat
=
10
;
const
int
nrepeat
=
stream_config
.
nrepeat_
;
#if DEBUG_LOG
printf
(
"Start running %d times...
\n
"
,
nrepeat
);
#endif
...
...
include/ck/stream_config.hpp
View file @
e521823c
...
...
@@ -11,4 +11,6 @@ struct StreamConfig
hipStream_t
stream_id_
=
nullptr
;
bool
time_kernel_
=
false
;
int
log_level_
=
0
;
int
cold_niters_
=
1
;
int
nrepeat_
=
10
;
};
include/ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_direct_load.hpp
0 → 100644
View file @
e521823c
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
/**
* Transfer that uses direct load instructions to copy data from global to LDS memory.
*
* Traditional loads first copy data from global to registers, and then from registers to LDS.
* Direct loads do not need an intermediate step, data is copied directly from global to LDS,
* without the use of additional registers.
*
* However, the instruction has limitations:
* - each thread must copy exactly a single DWORD - 4 bytes;
* - threads within a single wavefront must write consecutive DWORDS into LDS,
* (data in global do not need to be contiguous, each thread might have its own offset).
*
* To make sure that all the transfers finished, the `waitcnt` instruction must be used with
* `vmcnt` instead of `lgkmcnt`.
*
* Limitations of the transfer class:
* - `SrcData` must be the same as `DstData` - no possibility to convert the data type in flight;
* - `DstVectorDim` must be the last dimension;
* - `SrcVectorDim` must be the last dimension if `ScalarPerVector` is greater than 1;
* - `ScalarPerVector` times the number of bytes of `DstData` must be equal to a single DWORD = 4B
* (for examlpe if `DstData` is fp32, then `ScalarPerVector` must be 1; if `DstData` is fp16,
* `ScalarPerVector` must be 2);
* - if `ScalarPerVector` is greater than 1, the contiguous dimension in src and dst must be
* the same dimension;
* - threads in a wavefront must write contiguous data to LDS (when wavefront size is 64,
* they must write 64 contiguous DWORDs) - `ThreadClusterLengths` must be prepared in such a way
* to guarantee that.
*/
template
<
typename
ThreadGroup
,
typename
BlockSliceLengths
,
typename
ThreadClusterLengths
,
typename
SrcData
,
typename
DstData
,
typename
SrcDesc
,
typename
DstDesc
,
index_t
SrcVectorDim
,
index_t
DstVectorDim
,
index_t
ScalarPerVector
>
struct
ThreadGroupTensorSliceTransfer_DirectLoad
{
static
constexpr
index_t
nDim
=
remove_reference_t
<
SrcDesc
>::
GetNumOfDimension
();
using
Index
=
MultiIndex
<
nDim
>
;
using
SrcCoord
=
decltype
(
make_tensor_coordinate
(
SrcDesc
{},
Index
{}));
using
DstCoord
=
decltype
(
make_tensor_coordinate
(
DstDesc
{},
Index
{}));
using
SrcCoordStep
=
decltype
(
make_tensor_coordinate_step
(
SrcDesc
{},
Index
{}));
using
DstCoordStep
=
decltype
(
make_tensor_coordinate_step
(
DstDesc
{},
Index
{}));
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
block_slice_lengths
=
BlockSliceLengths
{};
static
constexpr
auto
thread_cluster_lengths
=
ThreadClusterLengths
{};
static
constexpr
auto
thread_single_load_size
=
generate_sequence
(
detail
::
lambda_scalar_per_access
<
DstVectorDim
,
ScalarPerVector
>
{},
Number
<
nDim
>
{});
// After a load, each thread moves by `thread_steps` instead of loading the next elements.
// It makes the whole wavefront load contiguous memory, what is required for direct loads.
static
constexpr
auto
thread_steps
=
thread_cluster_lengths
*
thread_single_load_size
;
static
constexpr
auto
thread_slice_lengths
=
block_slice_lengths
/
thread_steps
;
static
__device__
constexpr
bool
AreThreadClusterLengthsValid
()
{
// Make sure that ThreadClusterLengths are set in a way that allows for contiguous writes to
// LDS by the threads from a single wavefront.
// Examples (assuming 64 threads in a wavefront, 128 in a thread block):
// 1. BlockSliceLengths = [K0PerBlock, MPerBlock, K1PerBlock] = [4, 128, 8],
// data type = fp32 -> ScalarPerVector = 1
// INVALID: ThreadClusterLengths = [4, 4, 8] since in the first iteration, threads 0-31
// write [0, 0, 0] - [0, 3, 7] and thread 32 writes [1, 0, 0] instead of
// [0, 4, 0].
// VALID: ThreadClusterLengths = [2, 8, 8] or [1, 16, 8] since in the first iteration,
// threads 0-63 write [0, 0, 0] - [0, 7, 7] -> 64 consecutive elements (DWORDs).
// 2. BlockSliceLengths = [K0PerBlock, MPerBlock, K1PerBlock] = [4, 128, 8],
// data type = fp16 -> ScalarPerVector = 2
// NOTE: ThreadClusterLengths must take into account that each thread writes two
// elements (single DWORD) along the contiguous dimension.
// INVALID: ThreadClusterLengths = [4, 4, 8] since each 8 threads would try to write
// 8 * 2 elements of K1PerBlock and there are only 8;
// ThreadClusterLengths = [4, 8, 4] since in the first iteration, threads 0-31
// write [0, 0, 0] - [0, 7, 7] (7 since each writes 2 elements) and thread 32
// writes [1, 0, 0] instead of [0, 8, 0].
// VALID: ThreadClusterLengths = [4, 16, 4] or [2, 32, 4] or [1, 64, 4] since in the
// first iteration, threads 0-63 write [0, 0, 0] - [0, 15, 7] -> 128 consecutive
// elements = 64 consecutive DWORDs.
int
num_contiguous_dwords
=
1
;
bool
is_contiguous
=
true
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
(
is_contiguous
)
{
num_contiguous_dwords
*=
thread_cluster_lengths
[
nDim
-
i
-
1
];
}
if
(
thread_slice_lengths
[
nDim
-
i
-
1
]
>
1
)
{
is_contiguous
=
false
;
}
});
constexpr
index_t
wavefront_size
=
get_warp_size
();
const
bool
wave_contiguous
=
num_contiguous_dwords
%
wavefront_size
==
0
;
bool
thread_slice_lengths_correct
=
true
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
(
thread_slice_lengths
[
i
]
<=
0
)
{
thread_slice_lengths_correct
=
false
;
}
});
return
wave_contiguous
&&
thread_slice_lengths_correct
;
}
__device__
constexpr
ThreadGroupTensorSliceTransfer_DirectLoad
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_block_slice_origin
,
const
DstDesc
&
dst_desc
,
const
Index
&
dst_block_slice_origin
)
{
static_assert
(
ck
::
is_same_v
<
SrcData
,
DstData
>
,
"Direct load transfer does not support datatypes conversion. Source and "
"destination data types must be the same."
);
static_assert
(
DstVectorDim
==
nDim
-
1
,
"Direct load transfer requires the destination vector dimension to be the last one."
);
static_assert
(
ScalarPerVector
==
1
||
SrcVectorDim
==
DstVectorDim
,
"When loading more than one element per thread at once, the contiguous "
"dimension must be the same between source and destination."
);
constexpr
auto
dword_bytes
=
4
;
constexpr
auto
bytes_per_thread_load
=
ScalarPerVector
*
sizeof
(
SrcData
);
static_assert
(
bytes_per_thread_load
==
dword_bytes
,
"Direct load transfer requires each thread to load exactly a single "
"DWORD of data."
);
static_assert
(
nDim
==
remove_cvref_t
<
SrcDesc
>::
GetNumOfDimension
()
&&
nDim
==
remove_cvref_t
<
DstDesc
>::
GetNumOfDimension
()
&&
nDim
==
ThreadClusterLengths
::
Size
(),
"Inconsistent number of dimensions across lengths and descriptors."
);
static_assert
(
ThreadGroup
::
GetNumOfThread
()
>=
thread_cluster_desc_
.
GetElementSize
(),
"The number of threads cannot be less than the number of elements in "
"thread cluster lengths."
);
static_assert
(
AreThreadClusterLengthsValid
(),
"Thread cluster lengths are incorrect. They must be set in a way that allows a single "
"wavefront to write contiguous DWORDs into LDS memory. "
);
const
auto
thread_cluster_idx
=
thread_cluster_desc_
.
CalculateBottomIndex
(
make_multi_index
(
ThreadGroup
::
GetThreadId
()));
const
auto
thread_data_idx_begin
=
thread_cluster_idx
*
thread_single_load_size
;
SetSrcSliceOrigin
(
src_desc
,
src_block_slice_origin
+
thread_data_idx_begin
);
SetDstSliceOrigin
(
dst_desc
,
dst_block_slice_origin
+
thread_data_idx_begin
);
}
__device__
void
SetSrcSliceOrigin
(
const
SrcDesc
&
src_desc
,
const
Index
&
src_slice_origin_idx
)
{
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_idx
);
src_slice_origin_
=
src_slice_origin_idx
;
}
__device__
void
SetDstSliceOrigin
(
const
DstDesc
&
dst_desc
,
const
Index
&
dst_slice_origin_idx
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_idx
);
dst_slice_origin_
=
dst_slice_origin_idx
;
}
__device__
void
ResetDstSliceWindow
(
const
DstDesc
&
dst_desc
)
{
dst_coord_
=
make_tensor_coordinate
(
dst_desc
,
dst_slice_origin_
);
}
template
<
typename
SrcBuffer
,
typename
DstBuffer
>
__device__
void
Run
(
const
SrcDesc
&
src_desc
,
const
SrcBuffer
&
src_buf
,
const
DstDesc
&
dst_desc
,
DstBuffer
&
dst_buf
)
{
static_assert
(
SrcBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Global
,
"Source data must come from a global memory buffer."
);
static_assert
(
DstBuffer
::
GetAddressSpace
()
==
AddressSpaceEnum
::
Lds
,
"Destination data must be stored in an LDS memory buffer."
);
static_assert
(
ck
::
is_same_v
<
remove_cvref_t
<
typename
SrcBuffer
::
type
>
,
remove_cvref_t
<
SrcData
>>
,
"SrcBuffer and SrcData data types must be consistent."
);
static_assert
(
ck
::
is_same_v
<
remove_cvref_t
<
typename
DstBuffer
::
type
>
,
remove_cvref_t
<
DstData
>>
,
"DstBuffer and DstData data types must be consistent."
);
constexpr
auto
dst_access_lengths
=
thread_slice_lengths
;
const
auto
dst_forward_steps
=
generate_steps
(
dst_desc
,
1
);
const
auto
dst_backward_steps
=
generate_steps
(
dst_desc
,
-
1
);
const
auto
src_forward_steps
=
generate_steps
(
src_desc
,
1
);
const
auto
src_backward_steps
=
generate_steps
(
src_desc
,
-
1
);
// Loop over the destination block and copy data.
static_ford
<
decltype
(
dst_access_lengths
)
>
{}([
&
](
auto
ordered_dst_access_idx
)
{
const
auto
src_offset
=
src_coord_
.
GetOffset
();
const
auto
dst_offset
=
dst_coord_
.
GetOffset
();
// Check if src data is not in the logic padding area.
const
bool
is_src_valid
=
coordinate_has_valid_offset_assuming_visible_index_is_valid
(
src_desc
,
src_coord_
);
src_buf
.
template
DirectCopyToLds
<
remove_cvref_t
<
decltype
(
dst_buf
)>,
ScalarPerVector
>
(
dst_buf
,
src_offset
,
dst_offset
,
is_src_valid
);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
StaticallyIndexedArray
<
bool
,
nDim
>
move_on_dim_
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
move_on_dim_
(
i
)
=
ordered_dst_access_idx
[
i
]
<
dst_access_lengths
[
i
]
-
1
;
static_for
<
i
+
1
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
move_on_dim_
(
i
)
&=
ordered_dst_access_idx
[
j
]
==
dst_access_lengths
[
j
]
-
1
;
});
});
return
move_on_dim_
;
}
();
// Decide whether to move forward or backward.
constexpr
auto
forward_sweep
=
[
&
]()
{
StaticallyIndexedArray
<
bool
,
nDim
>
forward_sweep_
;
forward_sweep_
(
I0
)
=
true
;
static_for
<
1
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
index_t
tmp
=
ordered_dst_access_idx
[
I0
];
static_for
<
1
,
i
,
1
>
{}([
&
](
auto
j
)
{
tmp
=
tmp
*
dst_access_lengths
[
j
]
+
ordered_dst_access_idx
[
j
];
});
forward_sweep_
(
i
)
=
tmp
%
2
==
0
;
});
return
forward_sweep_
;
}();
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
move_on_dim
[
i
])
{
if
constexpr
(
forward_sweep
[
i
])
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_forward_steps
[
i
]);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_forward_steps
[
i
]);
}
else
{
move_tensor_coordinate
(
dst_desc
,
dst_coord_
,
dst_backward_steps
[
i
]);
move_tensor_coordinate
(
src_desc
,
src_coord_
,
src_backward_steps
[
i
]);
}
}
});
});
// Reset the destination slice since the entire buffer has been already filled.
ResetDstSliceWindow
(
dst_desc
);
}
__device__
void
MoveSrcSliceWindow
(
const
SrcDesc
&
src_desc
,
const
Index
&
step
)
{
src_slice_origin_
=
src_slice_origin_
+
step
;
src_coord_
=
make_tensor_coordinate
(
src_desc
,
src_slice_origin_
);
}
template
<
typename
DescType
>
__device__
auto
generate_steps
(
const
DescType
&
desc
,
int
sign
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
Index
step_idx
;
static_for
<
0
,
nDim
,
1
>
{}([
&
](
auto
j
)
{
step_idx
(
j
)
=
(
i
.
value
==
j
.
value
)
?
sign
*
thread_steps
[
i
]
:
0
;
});
return
make_tensor_coordinate_step
(
desc
,
step_idx
);
},
Number
<
nDim
>
{});
}
private:
static
constexpr
auto
thread_cluster_desc_
=
make_cluster_descriptor
(
ThreadClusterLengths
{});
SrcCoord
src_coord_
;
DstCoord
dst_coord_
;
Index
src_slice_origin_
;
Index
dst_slice_origin_
;
};
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_base.hpp
View file @
e521823c
...
...
@@ -59,7 +59,9 @@ struct BaseOperator
virtual
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
)
const
{
return
0
;
}
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
{
assert
(
p_arg
);
p_arg
->
p_workspace_
=
p_workspace
;
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp
0 → 100644
View file @
e521823c
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
/**
* \brief Grouped Convolution Forward
*
* \details
* input : input image A[G, N, C, Hi, Wi], A1[G, N, C, Hi, Wi]...
* input : weight B[G, K, C, Y, X], B1[G, K, C, Y, X]...
* input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* output : output image E[G, N, K, Ho, Wo]
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
* \tparam BLayout Weight layout (also for b1, b2...).
* \tparam DsLayout Ds layouts.
* \tparam ELayout Output layout.
* \tparam ADataType Input data type. Pass tuple if there is multiple A.
* \tparam BDataType Weight data type. Pass tuple if there is multiple B.
* \tparam DsDataType D data types.
* \tparam EDataType Output data type.
* \tparam AElementwiseOperation A elementwise operation.
* \tparam BElementwiseOperation B elementwise operation.
* \tparam CDEElementwiseOperation CDE elementwise operation.
* \tparam ComputeType Compute data type (default: ADataType, first if tuple passed).
*/
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
ComputeType
=
decltype
(
UnpackDataType
<
is_detected
<
is_tuple
,
ADataType
>
::
value
,
Number
<
0
>
,
ADataType
>
())
>
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
struct
DeviceGroupedConvFwdMultipleABD
:
public
BaseOperator
{
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
static
constexpr
bool
isMultiB
=
is_detected
<
is_tuple
,
BDataType
>::
value
;
static
constexpr
index_t
NumATensor
=
GetNumABTensors
<
isMultiA
,
ADataType
>
();
static
constexpr
index_t
NumBTensor
=
GetNumABTensors
<
isMultiB
,
BDataType
>
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
// If DataType is tuple, user has to pass std::array with pointers.
using
APointers
=
std
::
conditional_t
<
isMultiA
,
std
::
array
<
const
void
*
,
NumATensor
>&
,
const
void
*>
;
using
BPointers
=
std
::
conditional_t
<
isMultiB
,
std
::
array
<
const
void
*
,
NumBTensor
>&
,
const
void
*>
;
/**
* \brief Make argument pointer for grouped conv fwd.
*
* \param p_a A pointer to the input (std::array<const void*, NumA> with
pointers for multiple A).
* \param p_b A pointer to the weight (std::array<const void*, NumA> with
pointers for multiple B).
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the output.
* \param a_g_n_c_wis_lengths Input lengths [G, N, C, Spatial...] (for 3d).
* \param a_g_n_c_wis_strides Input strides [G, N, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_lengths Weight lengths [G, K, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_strides Weight strides [G, K, C, Spatial...] (for 3d).
* \param ds_g_n_k_wos_lengths Ds lengths [G, N, K, Spatial...] (for 3d).
* \param ds_g_n_k_wos_strides Ds strides [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_lengths Output lengths [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_strides Output strides [G, N, K, Spatial...] (for 3d).
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Input left paddings.
* \param input_right_pads Input right paddings.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
APointers
p_a
,
BPointers
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
View file @
e521823c
...
...
@@ -3,30 +3,18 @@
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
T
>
using
is_tuple
=
decltype
(
std
::
declval
<
T
&>
().
IsTuple
());
/**
* \brief Grouped Convolution Forward
*
* \details
* input : input image A[G, N, C, Hi, Wi], A1[G, N, C, Hi, Wi]...
* input : weight B[G, K, C, Y, X], B1[G, K, C, Y, X]...
* input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
* output : output image E[G, N, K, Ho, Wo]
*
* C = a_op(A, A1...) * b_op(B, B1...)
* E = cde_op(C, D0, D1, ...)
* \note This structure is deprecated (left for backwards compatibility). Please use
* DeviceGroupedConvFwdMultipleABD.
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ALayout Input layout (also for a1, a2...).
...
...
@@ -60,72 +48,19 @@ template <index_t NDimSpatial,
ADataType
>
())
>
// ComputeType is InputType by default (first
// in tuple for MultiAB), unpack if tuple was
// passed
struct
DeviceGroupedConvFwdMultipleD
:
public
BaseOperator
{
static
constexpr
bool
isMultiA
=
is_detected
<
is_tuple
,
ADataType
>::
value
;
static
constexpr
bool
isMultiB
=
is_detected
<
is_tuple
,
BDataType
>::
value
;
static
constexpr
index_t
NumATensor
=
GetNumABTensors
<
isMultiA
,
ADataType
>
();
static
constexpr
index_t
NumBTensor
=
GetNumABTensors
<
isMultiB
,
BDataType
>
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
NumDTensor
==
DsLayout
::
Size
(),
"wrong! Inconsistent NumDTensor"
);
// If DataType is tuple, user has to pass std::array with pointers.
using
APointers
=
std
::
conditional_t
<
isMultiA
,
std
::
array
<
const
void
*
,
NumATensor
>&
,
const
void
*>
;
using
BPointers
=
std
::
conditional_t
<
isMultiB
,
std
::
array
<
const
void
*
,
NumBTensor
>&
,
const
void
*>
;
/**
* \brief Make argument pointer for grouped conv fwd.
*
* \param p_a A pointer to the input (std::array<const void*, NumA> with
pointers for multiple A).
* \param p_b A pointer to the weight (std::array<const void*, NumA> with
pointers for multiple B).
* \param p_ds A pointers to the Ds.
* \param p_e A pointers to the output.
* \param a_g_n_c_wis_lengths Input lengths [G, N, C, Spatial...] (for 3d).
* \param a_g_n_c_wis_strides Input strides [G, N, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_lengths Weight lengths [G, K, C, Spatial...] (for 3d).
* \param b_g_k_c_xs_strides Weight strides [G, K, C, Spatial...] (for 3d).
* \param ds_g_n_k_wos_lengths Ds lengths [G, N, K, Spatial...] (for 3d).
* \param ds_g_n_k_wos_strides Ds strides [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_lengths Output lengths [G, N, K, Spatial...] (for 3d).
* \param e_g_n_k_wos_strides Output strides [G, N, K, Spatial...] (for 3d).
* \param conv_filter_strides Convolution filter strides.
* \param conv_filter_dilations Convolution filter dilations.
* \param input_left_pads Input left paddings.
* \param input_right_pads Input right paddings.
* \param a_element_op A elementwise operation object.
* \param b_element_op B elementwise operation object.
* \param cde_element_op CDE elementwise operation object.
* \return Pointer to the argument.
*/
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
APointers
p_a
,
BPointers
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
using
DeviceGroupedConvFwdMultipleD
=
DeviceGroupedConvFwdMultipleABD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
ComputeType
>
;
}
// namespace device
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp
View file @
e521823c
...
...
@@ -376,7 +376,9 @@ struct DeviceBatchNormBwdImpl : public DeviceBatchNormBwd<XDataType,
return
(
workspace_size
);
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl.hpp
View file @
e521823c
...
...
@@ -354,7 +354,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
return
(
workspace_size
);
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_forward_impl_obsolete.hpp
View file @
e521823c
...
...
@@ -345,7 +345,9 @@ struct DeviceBatchNormFwdImpl : public DeviceBatchNormFwd<XDataType,
return
(
workspace_size
);
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp
View file @
e521823c
...
...
@@ -13,6 +13,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace
ck
{
...
...
@@ -292,6 +293,12 @@ struct DeviceElementwise3dImpl : public DeviceElementwise<InDataTypeTuple,
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
if
((
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx941"
||
ck
::
get_device_name
()
==
"gfx942"
))
{
return
false
;
}
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
View file @
e521823c
...
...
@@ -821,7 +821,9 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
return
(
workspace_size
);
};
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp
0 → 100644
View file @
e521823c
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferScalarPerVector
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferScalarPerVector
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v4
,
typename
ComputeDataType
=
EDataType
>
struct
DeviceGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
using
GridwiseGemm
=
GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
GemmSpec
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferScalarPerVector
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferScalarPerVector
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
PipelineVer
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_gemm_multiple_d_xdl_cshuffle_lds_direct_load
<
GridwiseGemm
,
ADataType
,
BDataType
,
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
typename
GridwiseGemm
::
AGridDesc_AK0_M_AK1
,
typename
GridwiseGemm
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
Block2ETileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
);
};
const
auto
K
=
arg
.
a_grid_desc_m_k_
.
GetLength
(
I1
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
ck
::
is_lds_direct_load_supported
())
{
return
false
;
}
// Check vector load/store.
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// Check vector load of A.
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
MRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of B.
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
NRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of Ds.
// For now, only the RowMajor layout is supported.
bool
all_valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
if
constexpr
(
!
is_same_v
<
DLayout
,
Row
>
)
{
all_valid
=
false
;
}
});
if
(
!
all_valid
)
{
return
false
;
}
// Check vector load of E.
// For now, only the RowMajor layout is supported.
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CDEBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{
{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
},
{
PipelineVersion
::
v4
,
"v4"
}};
// clang-format off
str
<<
"DeviceGemmMultipleD_Xdl_CShuffle_LdsDirectLoad"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferScalarPerVector
<<
", "
<<
BBlockTransferScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp
0 → 100644
View file @
e521823c
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferScalarPerVector
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferScalarPerVector
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
PipelineVersion
PipelineVer
=
PipelineVersion
::
v4
,
typename
ComputeDataType
=
EDataType
>
struct
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
:
public
DeviceGemm
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
static
constexpr
auto
I1
=
Number
<
1
>
{};
using
GridwiseGemm
=
GridwiseGemmMultipleD_Xdl_CShuffle_LdsDirectLoad
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ADataType
,
BDataType
,
ComputeDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
GemmSpec
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferScalarPerVector
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferScalarPerVector
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
PipelineVer
>
;
using
Argument
=
typename
GridwiseGemm
::
Argument
;
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_gemm_multiple_d_xdl_cshuffle_lds_direct_load
<
GridwiseGemm
,
ADataType
,
BDataType
,
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
typename
GridwiseGemm
::
AGridDesc_AK0_M_AK1
,
typename
GridwiseGemm
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
Block2ETileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
// arg.p_ds_grid_,
ck
::
Tuple
<>
{},
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
);
};
const
auto
K
=
arg
.
a_grid_desc_m_k_
.
GetLength
(
I1
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
ck
::
is_xdl_supported
())
{
return
false
;
}
if
(
!
ck
::
is_lds_direct_load_supported
())
{
return
false
;
}
// Check vector load/store.
{
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// Check vector load of A.
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
ABlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
ABlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
MRaw_
%
ABlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of B.
if
constexpr
(
is_same_v
<
BLayout
,
Col
>
&&
BBlockTransferSrcVectorDim
==
2
)
{
if
(
arg
.
KRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
if
constexpr
(
is_same_v
<
BLayout
,
Row
>
&&
BBlockTransferSrcVectorDim
==
1
)
{
if
(
arg
.
NRaw_
%
BBlockTransferScalarPerVector
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// Check vector load of E.
// For now, only the RowMajor layout is supported.
if
constexpr
(
is_same_v
<
ELayout
,
Row
>
)
{
if
(
arg
.
NRaw_
%
CDEBlockTransferScalarPerVector_NPerBlock
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
using
EmptyDsPointers
=
std
::
array
<
const
void
*
,
0
>
;
using
EmptyDsStrides
=
std
::
array
<
ck
::
index_t
,
0
>
;
return
Argument
{
p_a
,
p_b
,
EmptyDsPointers
{},
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
EmptyDsStrides
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
using
EmptyDsPointers
=
std
::
array
<
const
void
*
,
0
>
;
using
EmptyDsStrides
=
std
::
array
<
ck
::
index_t
,
0
>
;
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
EmptyDsPointers
{},
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
EmptyDsStrides
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{
{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
},
{
PipelineVersion
::
v4
,
"v4"
}};
// clang-format off
str
<<
"DeviceGemm_Xdl_CShuffle_LdsDirectLoad"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferScalarPerVector
<<
", "
<<
BBlockTransferScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_streamk.hpp
View file @
e521823c
...
...
@@ -226,7 +226,9 @@ struct DeviceGemmXdlStreamK : public DeviceGemmStreamK<ALayout,
}
}
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
pArg
,
void
*
p_workspace
,
const
StreamConfig
&
=
StreamConfig
{})
const
override
{
Argument
*
pArg_
=
dynamic_cast
<
Argument
*>
(
pArg
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
View file @
e521823c
...
...
@@ -15,7 +15,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_
ab
d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
...
...
@@ -216,18 +216,18 @@ template <index_t NDimSpatial,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
struct
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
:
public
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
0 → 100644
View file @
e521823c
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_multiple_r_xdl_cshuffle.hpp
View file @
e521823c
...
...
@@ -834,7 +834,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
...
...
@@ -851,7 +851,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
...
...
@@ -1090,7 +1090,7 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleD_Xdl_CShuffle"
str
<<
"DeviceGroupedConvFwdMultiple
AB
D_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
View file @
e521823c
...
...
@@ -15,7 +15,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_
ab
d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
...
...
@@ -92,18 +92,18 @@ template <index_t NDimSpatial,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
:
public
DeviceGroupedConvFwdMultiple
AB
D
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
View file @
e521823c
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp
View file @
e521823c
...
...
@@ -817,12 +817,15 @@ struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
return
arg
.
group_count_
*
sizeof
(
GroupedGemmKernelArgument
<
NumDTensor
>
);
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
override
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
const
override
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
p_arg_
->
p_workspace_
=
p_workspace
;
hip_check_error
(
hipMemset
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
)));
hip_check_error
(
hipMemsetAsync
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
),
stream_config
.
stream_id_
));
}
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
...
...
Prev
1
2
3
4
5
6
7
8
9
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment