"...composable_kernel.git" did not exist on "32fe996da0aefc5274493b857a91f217f7fe3561"
Commit df506d26 authored by ltqin's avatar ltqin
Browse files

client example move to fused attention

parent 1b010bcd
...@@ -3,3 +3,6 @@ target_link_libraries(client_fused_attention PRIVATE composable_kernel::device_o ...@@ -3,3 +3,6 @@ target_link_libraries(client_fused_attention PRIVATE composable_kernel::device_o
add_executable(client_fused_attention_bias fused_attention_bias.cpp) add_executable(client_fused_attention_bias fused_attention_bias.cpp)
target_link_libraries(client_fused_attention_bias PRIVATE composable_kernel::device_operations) target_link_libraries(client_fused_attention_bias PRIVATE composable_kernel::device_operations)
add_executable(client_fused_attention_instance fused_attention_instance.cpp)
target_link_libraries(client_fused_attention_instance PRIVATE composable_kernel::device_operations)
add_executable(client_flash_attention flash_attention.cpp)
target_link_libraries(client_flash_attention PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute_general.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
struct ScaleBiasMask
{
ScaleBiasMask(float scale, float mask_filter_value)
: scale_(scale), mask_filter_value_(mask_filter_value)
{
}
// biased, masked
template <typename Y, typename X0, typename X1, typename X2>
__host__ __device__ constexpr void
operator()(Y& y, const X0& x, const X1& bias, const X2& mask) const;
template <>
__host__ __device__ constexpr void
operator()(float& y, const float& x, const ck::half_t& bias, const int16_t& mask) const
{
float filter_value = (mask == 1 ? 0.0f : mask_filter_value_);
y = scale_ * x + ck::type_convert<float>(bias) + filter_value;
}
template <>
__host__ __device__ constexpr void
operator()(float& y, const float& x, const ck::half_t& bias, const ck::half_t& mask) const
{
float filter_value = (mask < 1.0f ? mask_filter_value_ : 0.0f);
y = scale_ * x + ck::type_convert<float>(bias) + filter_value;
}
const float scale_;
const float mask_filter_value_;
};
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using B0ElementOp = ck::tensor_operation::element_wise::PassThrough;
using Acc0ElementOp = ScaleBiasMask;
using B1ElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
constexpr static auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
using ADataType = ck::half_t;
using B0DataType = ck::half_t;
using B1DataType = ck::half_t;
using CDataType = ck::half_t;
using D00DataType = ck::half_t;
using D01DataType = ck::half_t;
using AccDataType = float;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
int G0 = 48;
int G1 = 16;
int M = 1024;
int N = 1024;
int K = 64;
int O = 64;
// A layout [G0, M, G1, K]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides{M * G1 * K, K, G1 * K, 1};
// B0 layout [G0, N, G1, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides{N * G1 * K, K, G1 * K, 1};
// B1 layout [G0, N, G1, O]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides{N * G1 * O, O, 1, G1 * O};
// C layout [G0, M, G1, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
// D00 layout [G0, M, G1, N]
std::vector<ck::index_t> d00_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> d00_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1};
// D01 layout [G0, M, G1, N]
std::vector<ck::index_t> d01_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> d01_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1};
SimpleDeviceMem a_device_buf(sizeof(ADataType) * G0 * G1 * M * K);
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) * G0 * G1 * N * K);
SimpleDeviceMem d00_device_buf(sizeof(D00DataType) * G0 * G1 * M * N);
SimpleDeviceMem d01_device_buf(sizeof(D01DataType) * G0 * G1 * M * N);
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * G0 * G1 * O * N);
SimpleDeviceMem c_device_buf(sizeof(CDataType) * G0 * G1 * M * O);
using DeviceOp = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<
2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
ck::Tuple<D00DataType, D01DataType>,
ck::Tuple<>,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
MaskingSpec>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
std::cout << "Run all instances and do timing" << std::endl;
for(size_t i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer(),
c_device_buf.GetDeviceBuffer(),
std::array<void*, 2>{d00_device_buf.GetDeviceBuffer(),
d01_device_buf.GetDeviceBuffer()}, // p_acc0_biases
{}, // p_acc1_biases
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
std::array<std::vector<ck::index_t>, 2>{
d00_gs_ms_ns_lengths, d01_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 2>{
d00_gs_ms_ns_strides, d01_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}, // acc1_biases_gs_ms_os_strides
AElementOp{},
B0ElementOp{},
Acc0ElementOp{1 / sqrtf(K), 0.1},
B1ElementOp{},
CElementOp{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * G0 * G1;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
sizeof(D00DataType) * M * N * 2) *
G0 * G1;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best instance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
a_device_buf.GetDeviceBuffer(),
b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer(),
c_device_buf.GetDeviceBuffer(),
std::array<void*, 2>{d00_device_buf.GetDeviceBuffer(),
d01_device_buf.GetDeviceBuffer()}, // p_acc0_biases
{}, // p_acc1_biases
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
std::array<std::vector<ck::index_t>, 2>{
d00_gs_ms_ns_lengths, d01_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 2>{
d00_gs_ms_ns_strides, d01_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}, // acc1_biases_gs_ms_os_strides
AElementOp{},
B0ElementOp{},
Acc0ElementOp{1 / sqrtf(K), 0.1},
B1ElementOp{},
CElementOp{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment