Commit dd6a8de4 authored by Jehandad Khan's avatar Jehandad Khan
Browse files

Merge branch 'develop' into jd/dev_pkg

parents 0aa899aa abf4bdb9
...@@ -44,7 +44,7 @@ template <typename InDataType, ...@@ -44,7 +44,7 @@ template <typename InDataType,
typename InElementwiseOperation, typename InElementwiseOperation,
typename WeiElementwiseOperation, typename WeiElementwiseOperation,
typename OutElementwiseOperation, typename OutElementwiseOperation,
ConvolutionForwardSpecialization_t ConvForwardSpecialization, ConvolutionForwardSpecialization ConvForwardSpecialization,
ck::index_t NumDimSpatial, ck::index_t NumDimSpatial,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t MPerBlock, ck::index_t MPerBlock,
...@@ -142,7 +142,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -142,7 +142,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
const index_t ConvStrideW = conv_filter_strides[0]; const index_t ConvStrideW = conv_filter_strides[0];
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0) ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const auto in_gemmmraw_gemmk_grid_desc = const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k)); make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
...@@ -156,7 +156,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -156,7 +156,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
make_tuple(Sequence<0, 2>{}, Sequence<1>{})); make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
} }
else if constexpr(ConvForwardSpecialization == else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0) ConvolutionForwardSpecialization::Filter1x1Pad0)
{ {
const auto in_n_wi_c_grid_desc = const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C)); make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
...@@ -262,7 +262,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -262,7 +262,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
const index_t ConvStrideW = conv_filter_strides[1]; const index_t ConvStrideW = conv_filter_strides[1];
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0) ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
const auto in_gemmmraw_gemmk_grid_desc = const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k)); make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
...@@ -276,7 +276,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -276,7 +276,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
make_tuple(Sequence<0, 2>{}, Sequence<1>{})); make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
} }
else if constexpr(ConvForwardSpecialization == else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0) ConvolutionForwardSpecialization::Filter1x1Pad0)
{ {
const auto in_n_hi_wi_c_grid_desc = const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C)); make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
...@@ -367,6 +367,155 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -367,6 +367,155 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
} }
} }
template <ck::index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetInputTensorDescriptor(ck::index_t N,
ck::index_t C,
ck::index_t gemm_m,
ck::index_t gemm_k,
ck::index_t gemm_m_pad,
const std::vector<ck::index_t>& input_spatial_lengths,
const std::vector<ck::index_t>& filter_spatial_lengths,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& conv_filter_strides,
const std::vector<ck::index_t>& conv_filter_dilations,
const std::vector<ck::index_t>& input_left_pads,
const std::vector<ck::index_t>& input_right_pads)
{
const ck::index_t gemm_k0 = gemm_k / GemmK1Number;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{
const auto in_gemmmraw_gemmk_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(gemm_m, gemm_k));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmmraw_gemmk_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_right_pad_transform(gemm_m, gemm_m_pad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization::Filter1x1Pad0)
{
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_do_ho_wo_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(Do), make_tuple(ConvStrideD)),
make_embed_transform(make_tuple(Ho), make_tuple(ConvStrideH)),
make_embed_transform(make_tuple(Wo), make_tuple(ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_n_do_ho_wo_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<4>{}, Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
else
{
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_di_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Di, InLeftPadD, InRightPadD),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
const auto in_n_z_do_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Z, Do), make_tuple(ConvDilationD, ConvStrideD)),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(
Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}),
make_tuple(Sequence<0>{},
Sequence<1, 2>{},
Sequence<3, 4>{},
Sequence<5, 6>{},
Sequence<7>{}));
const auto in_gemmk_gemmmraw_grid_desc = transform_tensor_descriptor(
in_n_z_do_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Z, Y, X, C)),
make_merge_transform(make_tuple(N, Do, Ho, Wo))),
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(gemm_k0, GemmK1Number)),
make_pass_through_transform(gemm_m)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// in_gemmk0_gemmm_gemmk1_grid_desc
return transform_tensor_descriptor(
in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(gemm_k0),
make_right_pad_transform(gemm_m, gemm_m_pad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
}
}
static index_t GetGemmMRaw(ck::index_t N, static index_t GetGemmMRaw(ck::index_t N,
const std::vector<ck::index_t>& output_spatial_lengths) const std::vector<ck::index_t>& output_spatial_lengths)
{ {
...@@ -445,6 +594,13 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -445,6 +594,13 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}); 1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1});
} }
template <ck::index_t NDim, typename std::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1});
}
using ABCGridDescs = decltype(GetABCGridDesc<NumDimSpatial>()); using ABCGridDescs = decltype(GetABCGridDesc<NumDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>; using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
...@@ -457,7 +613,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -457,7 +613,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
ABDataType, // TODO: distinguish A/B datatype ABDataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
...@@ -593,6 +749,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -593,6 +749,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
float Run(const Argument& arg, int nrepeat = 1, hipStream_t stream_id = nullptr, bool measure_time = false) float Run(const Argument& arg, int nrepeat = 1, hipStream_t stream_id = nullptr, bool measure_time = false)
{ {
#if 0
{ {
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0) std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", " << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
...@@ -605,7 +762,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -605,7 +762,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", " std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
} }
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
...@@ -708,8 +865,24 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -708,8 +865,24 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
// Input tensors can't be bigger than 2GB each.
constexpr std::size_t GB2 = 2 * 1e9;
if(arg.a_grid_desc_k0_m_k1_.GetElementSpaceSize() > GB2)
{
return false;
}
if(arg.b_grid_desc_k0_n_k1_.GetElementSpaceSize() > GB2)
{
return false;
}
if(arg.c_grid_desc_m_n_.GetElementSpaceSize() > GB2)
{
return false;
}
if constexpr(ConvForwardSpecialization == if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Stride1Pad0) ConvolutionForwardSpecialization::Filter1x1Stride1Pad0)
{ {
// check if it's 1x1, stride=1 conv // check if it's 1x1, stride=1 conv
for(ck::index_t i = 0; i < NumDimSpatial; ++i) for(ck::index_t i = 0; i < NumDimSpatial; ++i)
...@@ -722,7 +895,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -722,7 +895,7 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
} }
} }
else if constexpr(ConvForwardSpecialization == else if constexpr(ConvForwardSpecialization ==
ConvolutionForwardSpecialization_t::Filter1x1Pad0) ConvolutionForwardSpecialization::Filter1x1Pad0)
{ {
// check if it's 1x1 conv // check if it's 1x1 conv
for(ck::index_t i = 0; i < NumDimSpatial; ++i) for(ck::index_t i = 0; i < NumDimSpatial; ++i)
...@@ -855,7 +1028,8 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -855,7 +1028,8 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<< BlockSize << ", " << BlockSize << ", "
<< MPerBlock << ", " << MPerBlock << ", "
<< NPerBlock << ", " << NPerBlock << ", "
<< K0PerBlock << K0PerBlock << ", "
<< getConvFwdSpecializationStr(ConvForwardSpecialization)
<< ">"; << ">";
// clang-format on // clang-format on
......
#ifndef DEVICE_GEMM_HPP #pragma once
#define DEVICE_GEMM_HPP
#include <iostream> #include <iostream>
#include <vector>
#include "device_base.hpp" #include "device_base.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <typename AElementwiseOperation, struct GemmShape
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmBias : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> ck::index_t M, N, K;
MakeArgumentPointer(const void* p_a, ck::index_t StrideA, StrideB, StrideC;
const void* p_b,
const void* p_bias,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmBiasPtr = std::unique_ptr<
DeviceGemmBias<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
template <typename AElementwiseOperation, template <typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation> typename CElementwiseOperation>
...@@ -65,7 +42,29 @@ template <typename AElementwiseOperation, ...@@ -65,7 +42,29 @@ template <typename AElementwiseOperation,
using DeviceGemmPtr = std::unique_ptr< using DeviceGemmPtr = std::unique_ptr<
DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>; DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGroupedGemm : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(std::vector<const void*>& p_a,
std::vector<const void*>& p_b,
std::vector<void*>& p_c,
std::vector<GemmShape>& gemm_shapes,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
ck::index_t KBatch = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGroupedGemmPtr = std::unique_ptr<
DeviceGroupedGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
#endif
#pragma once
#include <iostream>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGemmBias : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
const void* p_bias,
void* p_c,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmBiasPtr = std::unique_ptr<
DeviceGemmBias<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#pragma once
#include <iostream>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename D0ReduceOperation,
typename D1ReduceOperation>
struct DeviceGemmReduce : public BaseOperator
{
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
void* p_d0,
void* p_d1,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
D0ReduceOperation d0_reduce_op,
D1ReduceOperation d1_reduce_op,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename D0ReduceOperation,
typename D1ReduceOperation>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
D0ReduceOperation,
D1ReduceOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_reduce.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_reduce_xdl_cshuffle_v1.hpp"
#include "gemm_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename ReduceAccDataType,
typename DDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename D0ReduceOperation,
typename D1ReduceOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
typename CReduceThreadClusterLengths_MPerBlock_NPerBlock,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock>
struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
D0ReduceOperation,
D1ReduceOperation>
{
using DeviceOp = DeviceGemmReduce_Xdl_CShuffle;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideC));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
// assume D is packed tensor
static auto MakeDGridDescriptor_M(index_t MRaw)
{
const auto d_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(MRaw));
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto MPad = M - MRaw;
if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M
return transform_tensor_descriptor(d_grid_desc_mraw,
make_tuple(make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
}
else
{
// not pad M
return d_grid_desc_mraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using DGridDesc_M = decltype(MakeDGridDescriptor_M(1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
CDataType,
ReduceAccDataType,
DDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
D0ReduceOperation,
D1ReduceOperation,
InMemoryDataOperationEnum::Set,
InMemoryDataOperationEnum::AtomicAdd,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
DGridDesc_M,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
CReduceThreadClusterLengths_MPerBlock_NPerBlock,
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
DDataType* p_d0_grid,
DDataType* p_d1_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
D0ReduceOperation d0_reduce_op,
D1ReduceOperation d1_reduce_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
p_d0_grid_{p_d0_grid},
p_d1_grid_{p_d1_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
d_grid_desc_m_{DeviceOp::MakeDGridDescriptor_M(MRaw)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
d_grid_desc_mblock_mperblock_{},
block_2_ctile_map_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op},
d0_reduce_op_{d0_reduce_op},
d1_reduce_op_{d1_reduce_op}
{
if(GridwiseGemm::CheckValidity(
a_grid_desc_ak0_m_ak1_, b_grid_desc_bk0_n_bk1_, c_grid_desc_m_n_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
d_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeDGridDescriptor_MBlock_MPerBlock(d_grid_desc_m_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
DDataType* p_d0_grid_;
DDataType* p_d1_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
DGridDesc_M d_grid_desc_m_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock d_grid_desc_mblock_mperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
D0ReduceOperation d0_reduce_op_;
D1ReduceOperation d1_reduce_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int /* nrepeat */ = 1)
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.d_grid_desc_m_{ " << arg.d_grid_desc_m_.GetLength(I0) << "}"
<< std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_ak0_m_ak1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_reduce_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
DDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
D0ReduceOperation,
D1ReduceOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_d0_grid_,
arg.p_d1_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.d0_reduce_op_,
arg.d1_reduce_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_reduce_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
DDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
D0ReduceOperation,
D1ReduceOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_d0_grid_,
arg.p_d1_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.d0_reduce_op_,
arg.d1_reduce_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
return 0;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
DDataType* p_d0,
DDataType* p_d1,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
D0ReduceOperation d0_reduce_op,
D1ReduceOperation d1_reduce_op)
{
return Argument{p_a,
p_b,
p_c,
p_d0,
p_d1,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
d0_reduce_op,
d1_reduce_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
void* p_d0,
void* p_d1,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
D0ReduceOperation d0_reduce_op,
D1ReduceOperation d1_reduce_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<DDataType*>(p_d0),
static_cast<DDataType*>(p_d1),
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
d0_reduce_op,
d1_reduce_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmReduce_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -27,7 +27,7 @@ template <typename ADataType, ...@@ -27,7 +27,7 @@ template <typename ADataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
GemmSpecialization_t GemmSpecialization, GemmSpecialization GemmSpec,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t MPerBlock, ck::index_t MPerBlock,
ck::index_t NPerBlock, ck::index_t NPerBlock,
...@@ -80,7 +80,7 @@ struct DeviceGemmXdl ...@@ -80,7 +80,7 @@ struct DeviceGemmXdl
} }
}(); }();
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock; const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
...@@ -119,7 +119,7 @@ struct DeviceGemmXdl ...@@ -119,7 +119,7 @@ struct DeviceGemmXdl
} }
}(); }();
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock; const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
...@@ -154,7 +154,7 @@ struct DeviceGemmXdl ...@@ -154,7 +154,7 @@ struct DeviceGemmXdl
} }
}(); }();
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock; const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock; const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
...@@ -186,7 +186,7 @@ struct DeviceGemmXdl ...@@ -186,7 +186,7 @@ struct DeviceGemmXdl
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
...@@ -138,7 +138,7 @@ struct DeviceGemmXdl_C_Shuffle ...@@ -138,7 +138,7 @@ struct DeviceGemmXdl_C_Shuffle
AccDataType, AccDataType,
CShuffleDataType, CShuffleDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
...@@ -4,9 +4,7 @@ ...@@ -4,9 +4,7 @@
#include <iostream> #include <iostream>
#include <sstream> #include <sstream>
#include "device.hpp" #include "device.hpp"
#include "device_base.hpp" #include "device_gemm_bias.hpp"
#include "device_gemm.hpp"
#include "device_gemm_xdl.hpp"
#include "common_header.hpp" #include "common_header.hpp"
#include "tensor_layout.hpp" #include "tensor_layout.hpp"
#include "tensor_descriptor.hpp" #include "tensor_descriptor.hpp"
...@@ -141,7 +139,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d ...@@ -141,7 +139,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
...@@ -147,7 +147,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation ...@@ -147,7 +147,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
...@@ -169,7 +169,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add ...@@ -169,7 +169,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "tensor_operation/gpu/device/gemm_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
struct DeviceGemm_Xdl_CShuffle
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
using DeviceOp = DeviceGemm_Xdl_CShuffle;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideC));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
if(GridwiseGemm::CheckValidity(
a_grid_desc_ak0_m_ak1_, b_grid_desc_bk0_n_bk1_, c_grid_desc_m_n_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if(!GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_ak0_m_ak1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
if(nrepeat == 0)
{
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
}
else
{
ave_time =
launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
}
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
if(nrepeat == 0)
{
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
}
else
{
ave_time =
launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_ctile_map_);
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_ak0_m_ak1_, arg.b_grid_desc_bk0_n_bk1_, arg.c_grid_desc_m_n_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_c,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemm_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -31,7 +31,7 @@ template <typename ADataType, ...@@ -31,7 +31,7 @@ template <typename ADataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
GemmSpecialization_t GemmSpecialization, GemmSpecialization GemmSpec,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t MPerBlock, ck::index_t MPerBlock,
ck::index_t NPerBlock, ck::index_t NPerBlock,
...@@ -91,7 +91,7 @@ struct DeviceGemmXdlSplitK ...@@ -91,7 +91,7 @@ struct DeviceGemmXdlSplitK
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock; const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor( return transform_tensor_descriptor(
...@@ -136,7 +136,7 @@ struct DeviceGemmXdlSplitK ...@@ -136,7 +136,7 @@ struct DeviceGemmXdlSplitK
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock; const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor( return transform_tensor_descriptor(
...@@ -170,7 +170,7 @@ struct DeviceGemmXdlSplitK ...@@ -170,7 +170,7 @@ struct DeviceGemmXdlSplitK
} }
}(); }();
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock; const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock; const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
...@@ -209,7 +209,7 @@ struct DeviceGemmXdlSplitK ...@@ -209,7 +209,7 @@ struct DeviceGemmXdlSplitK
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
...@@ -250,7 +250,7 @@ struct DeviceGemmXdlSplitK ...@@ -250,7 +250,7 @@ struct DeviceGemmXdlSplitK
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::AtomicAdd, InMemoryDataOperationEnum::AtomicAdd,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
...@@ -31,7 +31,7 @@ template <typename ADataType, ...@@ -31,7 +31,7 @@ template <typename ADataType,
typename AElementwiseOperation, typename AElementwiseOperation,
typename BElementwiseOperation, typename BElementwiseOperation,
typename CElementwiseOperation, typename CElementwiseOperation,
GemmSpecialization_t GemmSpecialization, GemmSpecialization GemmSpec,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t MPerBlock, ck::index_t MPerBlock,
ck::index_t NPerBlock, ck::index_t NPerBlock,
...@@ -93,7 +93,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -93,7 +93,7 @@ struct DeviceGemmXdlSplitKCShuffle
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock; const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor( return transform_tensor_descriptor(
...@@ -138,7 +138,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -138,7 +138,7 @@ struct DeviceGemmXdlSplitKCShuffle
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock; const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor( return transform_tensor_descriptor(
...@@ -172,7 +172,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -172,7 +172,7 @@ struct DeviceGemmXdlSplitKCShuffle
} }
}(); }();
if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding) if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{ {
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock; const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock; const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
...@@ -211,7 +211,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -211,7 +211,7 @@ struct DeviceGemmXdlSplitKCShuffle
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
...@@ -253,7 +253,7 @@ struct DeviceGemmXdlSplitKCShuffle ...@@ -253,7 +253,7 @@ struct DeviceGemmXdlSplitKCShuffle
ADataType, // TODO: distinguish A/B datatype ADataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, CDataType,
InMemoryDataOperationEnum_t::AtomicAdd, InMemoryDataOperationEnum::AtomicAdd,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1, BGridDesc_K0_N_K1,
CGridDesc_M_N, CGridDesc_M_N,
......
#ifndef DEVICE_GROUPED_GEMM_XDL_HPP
#define DEVICE_GROUPED_GEMM_XDL_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "gemm_specialization.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector,
ck::index_t NumPrefetch = 1,
ck::index_t MaxGroupCount = 10>
struct DeviceGroupedGemmXdl
: public DeviceGroupedGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
NumPrefetch>;
struct GroupedGemmBlock2CTileMap
{
GroupedGemmBlock2CTileMap()
{
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1);
BlockStart_ = -1;
}
GroupedGemmBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01,
ck::index_t BlockStart)
{
block_2_ctile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n, M01, N01);
BlockStart_ = BlockStart;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_2_ctile_map_.CalculateBottomIndex(
make_multi_index(idx_top[I0] - BlockStart_));
}
private:
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
ck::index_t BlockStart_;
};
struct GemmDescKernelArg
{
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
GroupedGemmBlock2CTileMap grouped_gemm_block_2_ctile_map_;
const ADataType* a_ptr;
const BDataType* b_ptr;
CDataType* c_ptr;
ck::index_t BlockStart_, BlockEnd_;
};
// Argument
struct Argument : public BaseArgument
{
Argument(std::vector<const void*>& p_a,
std::vector<const void*>& p_b,
std::vector<void*>& p_c,
std::vector<GemmShape>& gemm_shapes,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
grid_size_ = 0;
group_count_ = static_cast<int>(gemm_shapes.size());
if(!(group_count_ == p_a.size() && group_count_ == p_b.size() &&
group_count_ == p_c.size()))
{
throw std::runtime_error("wrong! group_count_ != P_a/b/c.size");
}
gemm_desc_kernel_arg_.reserve(group_count_);
for(index_t i = 0; i < gemm_shapes.size(); i++)
{
const index_t M = gemm_shapes[i].M;
const index_t N = gemm_shapes[i].N;
const index_t K = gemm_shapes[i].K;
const index_t StrideA = gemm_shapes[i].StrideA;
const index_t StrideB = gemm_shapes[i].StrideB;
const index_t StrideC = gemm_shapes[i].StrideC;
const auto a_grid_desc_k0_m_k1_ =
DeviceGroupedGemmXdl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
const auto b_grid_desc_k0_n_k1_ =
DeviceGroupedGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
const auto c_grid_desc_m_n_ =
DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);
const index_t grid_size_grp = GridwiseGemm::CalculateGridSize(c_grid_desc_m_n_);
const index_t BlockStart = grid_size_;
const index_t BlockEnd = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp;
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{
const auto c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
const auto grouped_gemm_block_2_ctile_map_ =
GroupedGemmBlock2CTileMap(c_grid_desc_m_n_, M01, N01, BlockStart);
gemm_desc_kernel_arg_.push_back(
GemmDescKernelArg{a_grid_desc_k0_m_k1_,
b_grid_desc_k0_n_k1_,
c_grid_desc_m_n_,
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
grouped_gemm_block_2_ctile_map_,
static_cast<const ADataType*>(p_a[i]),
static_cast<const BDataType*>(p_b[i]),
static_cast<CDataType*>(p_c[i]),
BlockStart,
BlockEnd});
}
}
}
// private:
index_t M01_;
index_t N01_;
index_t group_count_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
std::vector<GemmDescKernelArg> gemm_desc_kernel_arg_;
index_t grid_size_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceGroupedGemmXdl::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
StaticallyIndexedArray<GemmDescKernelArg, MaxGroupCount> gemm_desc_kernel_arg_arg;
bool has_main_k0_block_loop = true;
static_for<0, MaxGroupCount, 1>{}([&](auto i) {
if(i < arg.gemm_desc_kernel_arg_.size())
{
gemm_desc_kernel_arg_arg(i) = arg.gemm_desc_kernel_arg_[i];
std::cout << "group: " << i << " arg.a_grid_desc_k0_m_k1_{"
<< gemm_desc_kernel_arg_arg[i].a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", "
<< gemm_desc_kernel_arg_arg[i].a_grid_desc_k0_m_k1_.GetLength(I1)
<< ", "
<< gemm_desc_kernel_arg_arg[i].a_grid_desc_k0_m_k1_.GetLength(I2)
<< "}";
std::cout << ", arg.b_grid_desc_k0_n_k1_{"
<< gemm_desc_kernel_arg_arg[i].b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", "
<< gemm_desc_kernel_arg_arg[i].b_grid_desc_k0_n_k1_.GetLength(I1)
<< ", "
<< gemm_desc_kernel_arg_arg[i].b_grid_desc_k0_n_k1_.GetLength(I2)
<< "}";
std::cout << ", arg.c_grid_desc_m_n_{ "
<< gemm_desc_kernel_arg_arg[i].c_grid_desc_m_n_.GetLength(I0) << ", "
<< gemm_desc_kernel_arg_arg[i].c_grid_desc_m_n_.GetLength(I1) << "}"
<< std::endl;
if(!GridwiseGemm::CheckValidity(
gemm_desc_kernel_arg_arg[i].a_grid_desc_k0_m_k1_,
gemm_desc_kernel_arg_arg[i].b_grid_desc_k0_n_k1_,
gemm_desc_kernel_arg_arg[i].c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
}
const auto K0 = gemm_desc_kernel_arg_arg[i].a_grid_desc_k0_m_k1_.GetLength(I0);
if(GridwiseGemm::CalculateHasMainK0BlockLoop(K0) != has_main_k0_block_loop)
{
throw std::runtime_error("wrong! not all gemm has_main_k0_block_loop");
}
}
});
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel =
kernel_grouped_gemm_xdlops_v2r3<GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<GemmDescKernelArg>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
true,
MaxGroupCount>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
gemm_desc_kernel_arg_arg,
arg.gemm_desc_kernel_arg_.size(),
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_);
}
else
{
const auto kernel =
kernel_grouped_gemm_xdlops_v2r3<GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<GemmDescKernelArg>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
false,
MaxGroupCount>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
gemm_desc_kernel_arg_arg,
arg.gemm_desc_kernel_arg_.size(),
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(arg.gemm_desc_kernel_arg_.size() != arg.group_count_)
return false;
else
return true;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*>& p_a,
std::vector<const void*>& p_b,
std::vector<void*>& p_c,
std::vector<GemmShape> gemm_shapes,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a, p_b, p_c, gemm_shapes, 1, 1, a_element_op, b_element_op, c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(std::vector<const void*>& p_a,
std::vector<const void*>& p_b,
std::vector<void*>& p_c,
std::vector<GemmShape>& gemm_shapes,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
index_t /* KBatch */ = 1) override
{
return std::make_unique<Argument>(
p_a, p_b, p_c, gemm_shapes, 1, 1, a_element_op, b_element_op, c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemmXdl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -10,7 +10,7 @@ namespace ck { ...@@ -10,7 +10,7 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
template <ck::ReduceTensorOp_t ReduceOpId> template <ck::ReduceTensorOp ReduceOpId>
struct DevicePool2dFwd : public BaseOperator struct DevicePool2dFwd : public BaseOperator
{ {
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
...@@ -29,7 +29,7 @@ struct DevicePool2dFwd : public BaseOperator ...@@ -29,7 +29,7 @@ struct DevicePool2dFwd : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <ck::ReduceTensorOp_t ReduceOpId> template <ck::ReduceTensorOp ReduceOpId>
using DevicePool2dFwdPtr = std::unique_ptr<DevicePool2dFwd<ReduceOpId>>; using DevicePool2dFwdPtr = std::unique_ptr<DevicePool2dFwd<ReduceOpId>>;
} // namespace device } // namespace device
......
...@@ -16,7 +16,7 @@ namespace device { ...@@ -16,7 +16,7 @@ namespace device {
template <typename InDataType, template <typename InDataType,
typename OutDataType, typename OutDataType,
typename AccDataType, typename AccDataType,
ck::ReduceTensorOp_t ReduceOpId, ck::ReduceTensorOp ReduceOpId,
bool NeedIndices, bool NeedIndices,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t ReduceMThreadClusterSize, ck::index_t ReduceMThreadClusterSize,
...@@ -181,7 +181,7 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd ...@@ -181,7 +181,7 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
reduce_lowest_length_ = window_spatial_lengths[1]; reduce_lowest_length_ = window_spatial_lengths[1];
// TODO: is this correct? // TODO: is this correct?
if constexpr(ReduceOpId == ck::ReduceTensorOp_t::AVG) if constexpr(ReduceOpId == ck::ReduceTensorOp::AVG)
{ {
ck::index_t divider = window_spatial_lengths[0] * window_spatial_lengths[1]; ck::index_t divider = window_spatial_lengths[0] * window_spatial_lengths[1];
in_element_op_ = InElementwiseOperation{divider}; in_element_op_ = InElementwiseOperation{divider};
......
...@@ -16,9 +16,11 @@ namespace device { ...@@ -16,9 +16,11 @@ namespace device {
template <typename InElementwiseOperation, typename AccElementwiseOperation> template <typename InElementwiseOperation, typename AccElementwiseOperation>
struct DeviceReduce : public BaseOperator struct DeviceReduce : public BaseOperator
{ {
virtual size_t GetWorkspaceSizeInBytes(const std::vector<int>& inLengths) virtual long_index_t GetWorkspaceSizeInBytes(const std::vector<int> inLengths,
const std::vector<int> reduceDims)
{ {
(void)inLengths; (void)inLengths;
(void)reduceDims;
return (0); return (0);
}; };
...@@ -32,18 +34,19 @@ struct DeviceReduce : public BaseOperator ...@@ -32,18 +34,19 @@ struct DeviceReduce : public BaseOperator
}; };
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths, MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int>& inStrides, const std::vector<int> inStrides,
const std::vector<int>& outLengths, const std::vector<int> outLengths,
const std::vector<int>& outStrides, const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha, float alpha,
float beta, float beta,
const void* in_dev, const void* in_dev,
void* out_dev, void* out_dev,
void* out_indices_dev, void* out_indices_dev,
void* workspace_dev, void* workspace_dev,
const InElementwiseOperation& inElementwiseOp, const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation& accElementwiseOp) = 0; const AccElementwiseOperation acc_elementwise_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
......
...@@ -15,8 +15,8 @@ namespace device { ...@@ -15,8 +15,8 @@ namespace device {
template <typename InDataType, template <typename InDataType,
typename AccDataType, typename AccDataType,
typename OutDataType, typename OutDataType,
int Rank, index_t Rank,
typename ReduceDims, index_t NumReduceDim,
typename ReduceOperation, typename ReduceOperation,
typename InElementwiseOperation, typename InElementwiseOperation,
typename AccElementwiseOperation, typename AccElementwiseOperation,
...@@ -36,15 +36,20 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -36,15 +36,20 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize, static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!"); "Invalid thread cluster size assignments!");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t; using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices; static constexpr bool BetaIsZero = NeedIndices;
using InvariantDims = decltype(get_invariant_dims<Rank, ReduceDims>()); static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t srcDims = Rank; static constexpr index_t numSrcDim = Rank;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size(); static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDims = (InvariantDims::Size() == 0); static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize; static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize; static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
...@@ -52,18 +57,18 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -52,18 +57,18 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static auto MakeSrc2dDescriptor(const std::vector<int>& inLengths, static auto MakeSrc2dDescriptor(const std::vector<int>& inLengths,
const std::vector<int>& inStrides) const std::vector<int>& inStrides)
{ {
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<srcDims>{}); const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<srcDims>{}); const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides); const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() { const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDims) if constexpr(reduceAllDim)
{ {
const auto one_dim_inDesc = transform_tensor_descriptor( const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc, inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)), make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, srcDims, 1>::type{}), make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc, return transform_tensor_descriptor(one_dim_inDesc,
...@@ -74,7 +79,10 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -74,7 +79,10 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
} }
else else
{ {
const auto toReduceDimLengths = using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{}); make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths = const auto invariantDimLengths =
make_tuple_from_array_and_index_seq(inLengths, InvariantDims{}); make_tuple_from_array_and_index_seq(inLengths, InvariantDims{});
...@@ -82,24 +90,26 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -82,24 +90,26 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
return transform_tensor_descriptor( return transform_tensor_descriptor(
inDesc, inDesc,
make_tuple(make_merge_transform(invariantDimLengths), make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(toReduceDimLengths)), make_merge_transform(reduceDimLengths)),
make_tuple(InvariantDims{}, ReduceDims{}), make_tuple(InvariantDims{}, ReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
} }
}(); }();
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{}); const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{}); const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen; const auto inPad_M =
const auto inPad_K = math::integer_least_multiple(innerLen, K_BlockTileSize) - innerLen; math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded = auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
transform_tensor_descriptor(in_grid_desc_m_k, in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M), make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(innerLen, inPad_K)), make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded); return (in_grid_desc_m_k_padded);
}; };
...@@ -107,67 +117,70 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -107,67 +117,70 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths, static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides) const std::vector<int>& outStrides)
{ {
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<dstDims>{}); const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<dstDims>{}); const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides); auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor( auto out_grid_desc_m = transform_tensor_descriptor(
outDesc, outDesc,
make_tuple(make_merge_transform(tupleDstLengths)), make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}), make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
const auto outerLen = out_grid_desc_m.GetLength(Number<0>{}); const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto inPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen; const auto inPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded = auto out_grid_desc_m_padded = transform_tensor_descriptor(
transform_tensor_descriptor(out_grid_desc_m, out_grid_desc_m,
make_tuple(make_right_pad_transform(outerLen, inPad)), make_tuple(make_right_pad_transform(invariantLength, inPad)),
make_tuple(Sequence<0>{}), make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded); return (out_grid_desc_m_padded);
}; };
struct Argument : public BaseArgument struct Argument : public BaseArgument
{ {
Argument(const std::vector<int>& inLengths, Argument(const std::vector<int> inLengths,
const std::vector<int>& inStrides, const std::vector<int> inStrides,
const std::vector<int>& outLengths, const std::vector<int> outLengths,
const std::vector<int>& outStrides, const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha, float alpha,
float beta, float beta,
const InDataType* in_dev, const InDataType* in_dev,
OutDataType* out_dev, OutDataType* out_dev,
IndexDataType* out_indices_dev, IndexDataType* out_indices_dev,
AccDataType* workspace_dev, AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op, const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) const AccElementwiseOperation acc_elementwise_op)
: in_dev_{in_dev}, out_dev_{out_dev}, out_indices_dev_{out_indices_dev} : outLengths_{outLengths},
outStrides_{outStrides},
in_dev_{in_dev},
out_dev_{out_dev},
out_indices_dev_{out_indices_dev},
in_elementwise_op_{in_elementwise_op},
acc_elementwise_op_{acc_elementwise_op}
{ {
(void)workspace_dev; (void)workspace_dev;
inLengths_ = inLengths; inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = inStrides; inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
outLengths_ = outLengths;
outStrides_ = outStrides;
in_elementwise_op_ = in_elementwise_op; alpha_ = type_convert<AccDataType>(alpha);
acc_elementwise_op_ = acc_elementwise_op; beta_ = type_convert<AccDataType>(beta);
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
std::tie(invariant_total_length, reduce_total_length) = std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, ReduceDims>(inLengths); get_2d_lengths<Rank, NumReduceDim>(inLengths_);
if constexpr(InvariantDims::Size() == 0) if constexpr(NumInvariantDim == 0)
invariant_lowest_length = 1; invariant_lowest_length = 1;
else else
invariant_lowest_length = inLengths[InvariantDims::At(InvariantDims::Size() - 1)]; invariant_lowest_length = inLengths_[NumInvariantDim - 1];
reduce_lowest_length = inLengths[ReduceDims::At(ReduceDims::Size() - 1)]; reduce_lowest_length = inLengths_[Rank - 1];
gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) / gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize; M_BlockTileSize;
...@@ -179,7 +192,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -179,7 +192,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
std::vector<int> outStrides_; std::vector<int> outStrides_;
AccDataType alpha_; AccDataType alpha_;
OutDataType beta_; AccDataType beta_;
const InDataType* in_dev_; const InDataType* in_dev_;
OutDataType* out_dev_; OutDataType* out_dev_;
...@@ -273,18 +286,22 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -273,18 +286,22 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
if constexpr(InSrcVectorDim == 0) if constexpr(InSrcVectorDim == 0)
{ {
if constexpr(InvariantDims::Size() == 0) if constexpr(NumInvariantDim == 0)
return (false); {
if(pArg->inStrides_[InvariantDims::At(InvariantDims::Size() - 1)] != 1)
return (false); return (false);
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1)
return (false);
if(pArg->invariant_lowest_length % InSrcVectorSize != 0) if(pArg->invariant_lowest_length % InSrcVectorSize != 0)
return (false); return (false);
};
} }
else else
{ {
if(pArg->inStrides_[ReduceDims::At(ReduceDims::Size() - 1)] != 1) if(pArg->inStrides_[Rank - 1] != 1)
return (false); return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0) if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
...@@ -303,23 +320,25 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl ...@@ -303,23 +320,25 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
}; };
std::unique_ptr<BaseArgument> std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths, MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int>& inStrides, const std::vector<int> inStrides,
const std::vector<int>& outLengths, const std::vector<int> outLengths,
const std::vector<int>& outStrides, const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha, float alpha,
float beta, float beta,
const void* in_dev, const void* in_dev,
void* out_dev, void* out_dev,
void* out_indices_dev, void* out_indices_dev,
void* workspace_dev, void* workspace_dev,
const InElementwiseOperation& in_elementwise_op, const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) override const AccElementwiseOperation acc_elementwise_op) override
{ {
return std::make_unique<Argument>(inLengths, return std::make_unique<Argument>(inLengths,
inStrides, inStrides,
outLengths, outLengths,
outStrides, outStrides,
reduceDims,
alpha, alpha,
beta, beta,
static_cast<const InDataType*>(in_dev), static_cast<const InDataType*>(in_dev),
......
...@@ -15,8 +15,8 @@ namespace device { ...@@ -15,8 +15,8 @@ namespace device {
template <typename InDataType, template <typename InDataType,
typename AccDataType, typename AccDataType,
typename OutDataType, typename OutDataType,
int Rank, index_t Rank,
typename ReduceDims, index_t NumReduceDim,
typename ReduceOperation, typename ReduceOperation,
typename InElementwiseOperation, typename InElementwiseOperation,
typename AccElementwiseOperation, typename AccElementwiseOperation,
...@@ -37,6 +37,10 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -37,6 +37,10 @@ struct DeviceReduceBlockWiseSecondCall
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize, static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!"); "Invalid thread cluster size assignments!");
static_assert((InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t; using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices; static constexpr bool BetaIsZero = NeedIndices;
...@@ -45,9 +49,9 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -45,9 +49,9 @@ struct DeviceReduceBlockWiseSecondCall
std::is_same<InDataType, AccDataType>::value, std::is_same<InDataType, AccDataType>::value,
"InDataType and AccDataType should be the same to use DEviceReduceBlockWiseSecondCall!"); "InDataType and AccDataType should be the same to use DEviceReduceBlockWiseSecondCall!");
using InvariantDims = decltype(get_invariant_dims<Rank, ReduceDims>()); static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t dstDims = (InvariantDims::Size() == 0) ? 1 : InvariantDims::Size(); static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize; static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize; static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
...@@ -61,18 +65,20 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -61,18 +65,20 @@ struct DeviceReduceBlockWiseSecondCall
const auto in_grid_desc_m_k = const auto in_grid_desc_m_k =
make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides); make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto outerLen = in_grid_desc_m_k.GetLength(Number<0>{}); const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto innerLen = in_grid_desc_m_k.GetLength(Number<1>{}); const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen; const auto inPad_M =
const auto inPad_K = math::integer_least_multiple(innerLen, K_BlockTileSize) - innerLen; math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded = auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
transform_tensor_descriptor(in_grid_desc_m_k, in_grid_desc_m_k,
make_tuple(make_right_pad_transform(outerLen, inPad_M), make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(innerLen, inPad_K)), make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{})); make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded); return (in_grid_desc_m_k_padded);
}; };
...@@ -80,26 +86,27 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -80,26 +86,27 @@ struct DeviceReduceBlockWiseSecondCall
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths, static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides) const std::vector<int>& outStrides)
{ {
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<dstDims>{}); const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<dstDims>{}); const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides); auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor( auto out_grid_desc_m = transform_tensor_descriptor(
outDesc, outDesc,
make_tuple(make_merge_transform(tupleDstLengths)), make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, dstDims, 1>::type{}), make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
const auto outerLen = out_grid_desc_m.GetLength(Number<0>{}); const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto outPad = math::integer_least_multiple(outerLen, M_BlockTileSize) - outerLen; const auto outPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded = auto out_grid_desc_m_padded = transform_tensor_descriptor(
transform_tensor_descriptor(out_grid_desc_m, out_grid_desc_m,
make_tuple(make_right_pad_transform(outerLen, outPad)), make_tuple(make_right_pad_transform(invariantLength, outPad)),
make_tuple(Sequence<0>{}), make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded); return (out_grid_desc_m_padded);
}; };
...@@ -117,18 +124,18 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -117,18 +124,18 @@ struct DeviceReduceBlockWiseSecondCall
AccDataType* workspace_dev, AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op, const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) const AccElementwiseOperation& acc_elementwise_op)
: in_dev_{in_dev}, out_dev_{out_dev}, out_indices_dev_{out_indices_dev} : inLengths_(inLengths),
inStrides_(inStrides),
outLengths_(outLengths),
outStrides_(outStrides),
in_dev_{in_dev},
out_dev_{out_dev},
out_indices_dev_{out_indices_dev},
in_elementwise_op_(in_elementwise_op),
acc_elementwise_op_(acc_elementwise_op)
{ {
inLengths_ = inLengths; alpha_ = type_convert<AccDataType>(alpha);
inStrides_ = inStrides; beta_ = type_convert<AccDataType>(beta);
outLengths_ = outLengths;
outStrides_ = outStrides;
in_elementwise_op_ = in_elementwise_op;
acc_elementwise_op_ = acc_elementwise_op;
alpha_ = static_cast<AccDataType>(alpha);
beta_ = static_cast<OutDataType>(beta);
invariant_total_length = inLengths[0]; invariant_total_length = inLengths[0];
reduce_total_length = inLengths[1]; reduce_total_length = inLengths[1];
...@@ -155,7 +162,7 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -155,7 +162,7 @@ struct DeviceReduceBlockWiseSecondCall
std::vector<int> outStrides_; std::vector<int> outStrides_;
AccDataType alpha_; AccDataType alpha_;
OutDataType beta_; AccDataType beta_;
const InDataType* in_dev_; const InDataType* in_dev_;
OutDataType* out_dev_; OutDataType* out_dev_;
...@@ -266,19 +273,22 @@ struct DeviceReduceBlockWiseSecondCall ...@@ -266,19 +273,22 @@ struct DeviceReduceBlockWiseSecondCall
}; };
std::unique_ptr<BaseArgument> std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int>& inLengths, MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int>& inStrides, const std::vector<int> inStrides,
const std::vector<int>& outLengths, const std::vector<int> outLengths,
const std::vector<int>& outStrides, const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha, float alpha,
float beta, float beta,
const void* in_dev, const void* in_dev,
void* out_dev, void* out_dev,
void* out_indices_dev, void* out_indices_dev,
void* workspace_dev, void* workspace_dev,
const InElementwiseOperation& in_elementwise_op, const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op) override const AccElementwiseOperation acc_elementwise_op) override
{ {
(void)reduceDims;
return std::make_unique<Argument>(inLengths, return std::make_unique<Argument>(inLengths,
inStrides, inStrides,
outLengths, outLengths,
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
#define DEVICE_REDUCE_COMMON_HPP #define DEVICE_REDUCE_COMMON_HPP
#include <vector> #include <vector>
#include <cassert>
#include "common_header.hpp" #include "common_header.hpp"
#include "reduction_enums.hpp" #include "reduction_enums.hpp"
...@@ -11,55 +12,30 @@ namespace ck { ...@@ -11,55 +12,30 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
// template <typename preUnaryOpType, typename posUnaryOpType> // here, inLengths[] is already shuffled so that lengths of invariant dims are included before those
// using DeviceReducePtr = std::unique_ptr<DeviceReduce<preUnaryOpType, posUnaryOpType>>; // of reduce dims
template <int Rank, int NumReduceDim>
template <int Rank, typename ReduceDims>
std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths) std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths)
{ {
static_assert(Rank <= 6, "bigger Rank size not supported!"); static_assert(Rank <= 6, "bigger Rank size not supported!");
size_t tensor_total_length = 1; size_t invariant_total_length = 1;
size_t reduce_total_length = 1; size_t reduce_total_length = 1;
static_for<0, ReduceDims::Size(), 1>{}(
[&](auto i) { reduce_total_length *= inLengths[ReduceDims::At(i)]; });
static_for<0, Rank, 1>{}([&](auto i) { tensor_total_length *= inLengths[i.value]; });
return std::make_pair(tensor_total_length / reduce_total_length, reduce_total_length); constexpr int NumInvariantDim = Rank - NumReduceDim;
};
template <int x, typename Seq> for(int i = NumInvariantDim; i < Rank; i++)
constexpr bool belong() reduce_total_length *= inLengths[i];
{
bool inside = false;
static_for<0, Seq::Size(), 1>{}([&](auto i) { inside = (inside || (x == Seq::At(i))); }); for(int i = 0; i < NumInvariantDim; i++)
invariant_total_length *= inLengths[i];
return (inside); return std::make_pair(invariant_total_length, reduce_total_length);
};
template <int Rank, typename ReduceDims, int start = 0>
constexpr auto get_invariant_dims()
{
static_assert(Rank <= 6, "bigger Rank size not supported!");
if constexpr(start >= Rank)
return Sequence<>{};
else
{
if constexpr(!belong<start, ReduceDims>())
return merge_sequences(Sequence<start>{},
get_invariant_dims<Rank, ReduceDims, start + 1>());
else
return get_invariant_dims<Rank, ReduceDims, start + 1>();
};
}; };
// helper functions using variadic template arguments // helper functions using variadic template arguments
template <index_t... Ns> template <index_t... Ns>
static auto make_tuple_from_array_and_index_seq(const std::vector<int>& lengths, Sequence<Ns...>) auto make_tuple_from_array_and_index_seq(const std::vector<int>& lengths, Sequence<Ns...>)
{ {
return make_tuple(static_cast<index_t>(lengths[Ns])...); return make_tuple(static_cast<index_t>(lengths[Ns])...);
}; };
...@@ -74,6 +50,39 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS ...@@ -74,6 +50,39 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS
return make_tuple_from_array_and_index_seq(lengths, index_seq); return make_tuple_from_array_and_index_seq(lengths, index_seq);
}; };
template <index_t Rank, index_t NumReduceDim>
std::vector<int> shuffle_tensor_dimensions(const std::vector<int>& origLengthsStrides,
const std::vector<int>& reduceDims)
{
std::vector<int> newLengthsStrides;
assert(Rank == origLengthsStrides.size() && NumReduceDim == reduceDims.size());
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
// collect invariant dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
newLengthsStrides.push_back(origLengthsStrides[i]);
};
// collect reduce dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) > 0)
{
newLengthsStrides.push_back(origLengthsStrides[i]);
};
return newLengthsStrides;
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment