Commit dd6a8de4 authored by Jehandad Khan's avatar Jehandad Khan
Browse files

Merge branch 'develop' into jd/dev_pkg

parents 0aa899aa abf4bdb9
add_test_executable(test_conv2d_fwd conv2d_fwd.cpp)
target_link_libraries(test_conv2d_fwd PRIVATE host_tensor)
target_link_libraries(test_conv2d_fwd PRIVATE device_conv2d_fwd_instance)
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_fwd.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_fwd.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_instance {
using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv2d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
float max_diff = 1e-6;
for(int i = 0; i < ref.mData.size(); ++i)
{
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff)
{
return false;
}
}
return true;
}
int main(int argc, char* argv[])
{
int data_type = 0;
int init_method = 0;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1)
{
data_type = 1;
init_method = 1;
}
else if(argc == 3)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
}
else if(argc == 18)
{
data_type = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
N = std::stoi(argv[3]);
K = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
conv_stride_h = std::stoi(argv[10]);
conv_stride_w = std::stoi(argv[11]);
conv_dilation_h = std::stoi(argv[12]);
conv_dilation_w = std::stoi(argv[13]);
in_left_pad_h = std::stoi(argv[14]);
in_left_pad_w = std::stoi(argv[15]);
in_right_pad_h = std::stoi(argv[16]);
in_right_pad_w = std::stoi(argv[17]);
}
else
{
printf("arg1: data type (0=fp32, 1=fp16, 2= bfp16, 3= int8_t )\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(1);
}
auto Run = [&](auto input_type, auto wei_type, auto out_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using ReferenceConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> input_spatial_lengths{Hi, Wi};
const std::vector<ck::index_t> filter_spatial_lengths{Y, X};
const std::vector<ck::index_t> output_spatial_lengths{Ho, Wo};
const std::vector<ck::index_t> conv_filter_strides{conv_stride_h, conv_stride_w};
const std::vector<ck::index_t> conv_filter_dilations{conv_dilation_h, conv_dilation_w};
const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};
auto f_host_tensor_descriptor =
[](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
Tensor<OutDataType> out_n_k_ho_wo_host_result(f_host_tensor_descriptor(N, K, Ho, Wo));
Tensor<OutDataType> out_n_k_ho_wo_device_result(f_host_tensor_descriptor(N, K, Ho, Wo));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0, 1});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1, 1});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceConvFwdNoOpPtr =
ck::tensor_operation::device::DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;
// add device Conv instances
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::bhalf_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::bhalf_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::bhalf_t>)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
}
else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<WeiDataType>, int8_t> &&
ck::is_same_v<ck::remove_cv_t<OutDataType>, int8_t>)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
}
if(conv_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
auto ref_conv = ReferenceConvFwdInstance{};
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
// profile device Conv instances
bool success = false;
for(auto& conv_ptr : conv_ptrs)
{
auto argument_ptr = conv_ptr->MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = conv_ptr->MakeInvokerPointer();
if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), 0);
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
if(!check_out(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result))
{
success = false;
break;
}
success = true;
}
}
if(success)
{
std::cout << "test conv2d fwd : Pass" << std::endl;
return 0;
}
else
{
std::cout << "test conv2d fwd: Fail " << std::endl;
return -1;
}
};
int res = -1;
if(data_type == 0)
{
res = Run(float(), float(), float());
}
else if(data_type == 1)
{
res = Run(ck::half_t(), ck::half_t(), ck::half_t());
}
else if(data_type == 2)
{
Run(ck::bhalf_t(), ck::bhalf_t(), ck::bhalf_t());
}
else if(data_type == 3)
{
res = Run(int8_t(), int8_t(), int8_t());
}
return res;
}
......@@ -3,36 +3,13 @@
#include <vector>
#include "config.hpp"
#include "conv_utils.hpp"
#include "conv_fwd_util.hpp"
#include "tensor_layout.hpp"
#include "check_err.hpp"
namespace {
template <typename T>
bool cmp_vec(const std::vector<T>& out, const std::vector<T>& ref, const std::string& msg)
{
if(out.size() != ref.size())
{
std::cout << "out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl
<< msg << std::endl;
return false;
}
for(std::size_t i = 0; i < ref.size(); ++i)
{
if(out[i] != ref[i])
{
std::cout << "out[" << i << "] != ref[" << i << "]: " << out[i] << "!=" << ref[i]
<< std::endl
<< msg << std::endl;
return false;
}
}
return true;
}
bool TestConvParams_GetOutputSpatialLengths()
bool test_conv_params_get_output_spatial_lengths()
{
bool res{true};
// -------------------------- default 2D ------------------------------------
......@@ -41,28 +18,28 @@ bool TestConvParams_GetOutputSpatialLengths()
// stride {2,2},
// dilations {1,1},
// padding {{1,1}, {1,1}}
ck::conv_util::ConvParams conv_params;
ck::utils::conv::ConvParams conv_params;
std::vector<ck::index_t> out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(out_spatial_len,
std::vector<ck::index_t>{36, 36},
"Error: ConvParams 2D default constructor.");
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36},
"Error: ConvParams 2D default constructor.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(
res = ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71, 71}, "Error: ConvParams 2D stride {1,1}.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{2, 2};
conv_params.input_left_pads = std::vector<ck::index_t>{2, 2};
conv_params.input_right_pads = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(out_spatial_len,
std::vector<ck::index_t>{37, 37},
"Error: ConvParams 2D padding left/right {2,2}.");
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37},
"Error: ConvParams 2D padding left/right {2,2}.");
conv_params.conv_filter_dilations = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(
res = ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36}, "Error: ConvParams 2D dilation {2,2}.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{3, 3};
......@@ -70,9 +47,10 @@ bool TestConvParams_GetOutputSpatialLengths()
conv_params.input_right_pads = std::vector<ck::index_t>{1, 1};
conv_params.conv_filter_dilations = std::vector<ck::index_t>{2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(out_spatial_len,
std::vector<ck::index_t>{23, 23},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}.");
res =
ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23, 23},
"Error: ConvParams 2D strides{3,3}, padding {1,1}, dilations {2,2}.");
// -------------------------- 1D ------------------------------------
conv_params.num_dim_spatial = 1;
......@@ -84,25 +62,25 @@ bool TestConvParams_GetOutputSpatialLengths()
conv_params.input_right_pads = std::vector<ck::index_t>{1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D default constructor.");
res = ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{1, 1};
conv_params.conv_filter_strides = std::vector<ck::index_t>{1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res =
cmp_vec(out_spatial_len, std::vector<ck::index_t>{71}, "Error: ConvParams 1D stride {1}.");
res = ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{71}, "Error: ConvParams 1D stride {1}.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{2};
conv_params.input_left_pads = std::vector<ck::index_t>{2};
conv_params.input_right_pads = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(out_spatial_len,
std::vector<ck::index_t>{37},
"Error: ConvParams 1D padding left/right {2}.");
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37},
"Error: ConvParams 1D padding left/right {2}.");
conv_params.conv_filter_dilations = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(
res = ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36}, "Error: ConvParams 1D dilation {2}.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{3};
......@@ -110,36 +88,104 @@ bool TestConvParams_GetOutputSpatialLengths()
conv_params.input_right_pads = std::vector<ck::index_t>{1};
conv_params.conv_filter_dilations = std::vector<ck::index_t>{2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = cmp_vec(out_spatial_len,
std::vector<ck::index_t>{23},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}.");
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{23},
"Error: ConvParams 1D strides{3}, padding {1}, dilations {2}.");
// -------------------------- 3D ------------------------------------
conv_params.num_dim_spatial = 3;
conv_params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
conv_params.input_spatial_lengths = std::vector<ck::index_t>{71, 71, 71};
conv_params.conv_filter_strides = std::vector<ck::index_t>{2, 2, 2};
conv_params.conv_filter_dilations = std::vector<ck::index_t>{1, 1, 1};
conv_params.input_left_pads = std::vector<ck::index_t>{1, 1, 1};
conv_params.input_right_pads = std::vector<ck::index_t>{1, 1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = ck::utils::check_err(
out_spatial_len, std::vector<ck::index_t>{36, 36, 36}, "Error: ConvParams 3D.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{1, 1, 1};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{71, 71, 71},
"Error: ConvParams 3D stride {1, 1, 1}.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_left_pads = std::vector<ck::index_t>{2, 2, 2};
conv_params.input_right_pads = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{37, 37, 37},
"Error: ConvParams 3D padding left/right {2, 2, 2}.");
conv_params.conv_filter_dilations = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = ck::utils::check_err(out_spatial_len,
std::vector<ck::index_t>{36, 36, 36},
"Error: ConvParams 3D dilation {2, 2, 2}.");
conv_params.conv_filter_strides = std::vector<ck::index_t>{3, 3, 3};
conv_params.input_left_pads = std::vector<ck::index_t>{1, 1, 1};
conv_params.input_right_pads = std::vector<ck::index_t>{1, 1, 1};
conv_params.conv_filter_dilations = std::vector<ck::index_t>{2, 2, 2};
out_spatial_len = conv_params.GetOutputSpatialLengths();
res = ck::utils::check_err(
out_spatial_len,
std::vector<ck::index_t>{23, 23, 23},
"Error: ConvParams 3D strides{3, 3, 3}, padding {1, 1, 1}, dilations {2, 2, 2}.");
return res;
}
bool TestGetHostTensorDescriptor()
bool test_get_host_tensor_descriptor()
{
bool res{true};
namespace tl = ck::tensor_layout::convolution;
std::vector<std::size_t> dims{2, 3, 4, 5};
HostTensorDescriptor h = ck::conv_util::GetHostTensorDescriptor(dims, tl::NHWC{});
res = cmp_vec(h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NHWC dimensions lengths!");
HostTensorDescriptor h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NHWC{});
res =
cmp_vec(h.GetStrides(), {3 * 4 * 5, 1, 3 * 5, 3}, "Error: wrong NHWC dimensions strides!");
ck::utils::check_err(h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NHWC dimensions lengths!");
res = ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 1, 3 * 5, 3}, "Error: wrong NHWC dimensions strides!");
h = ck::conv_util::GetHostTensorDescriptor(dims, tl::NCHW{});
res = cmp_vec(h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NCHW dimensions lengths!");
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCHW{});
res =
cmp_vec(h.GetStrides(), {3 * 4 * 5, 4 * 5, 5, 1}, "Error: wrong NCHW dimensions strides!");
ck::utils::check_err(h.GetLengths(), {2, 3, 4, 5}, "Error: wrong NCHW dimensions lengths!");
res = ck::utils::check_err(
h.GetStrides(), {3 * 4 * 5, 4 * 5, 5, 1}, "Error: wrong NCHW dimensions strides!");
dims = std::vector<std::size_t>{2, 3, 4};
h = ck::conv_util::GetHostTensorDescriptor(dims, tl::NWC{});
res = cmp_vec(h.GetLengths(), {2, 3, 4}, "Error: wrong NWC dimensions lengths!");
res = cmp_vec(h.GetStrides(), {3 * 4, 1, 3}, "Error: wrong NWC dimensions strides!");
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NWC{});
res = ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NWC dimensions lengths!");
res =
ck::utils::check_err(h.GetStrides(), {3 * 4, 1, 3}, "Error: wrong NWC dimensions strides!");
h = ck::conv_util::GetHostTensorDescriptor(dims, tl::NCW{});
res = cmp_vec(h.GetLengths(), {2, 3, 4}, "Error: wrong NCW dimensions lengths!");
res = cmp_vec(h.GetStrides(), {3 * 4, 4, 1}, "Error: wrong NCW dimensions strides!");
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCW{});
res = ck::utils::check_err(h.GetLengths(), {2, 3, 4}, "Error: wrong NCW dimensions lengths!");
res =
ck::utils::check_err(h.GetStrides(), {3 * 4, 4, 1}, "Error: wrong NCW dimensions strides!");
dims = std::vector<std::size_t>{2, 3, 4, 5, 6};
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NDHWC{});
res = ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NDHWC dimensions lengths!");
res = ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
1, // C
3 * 5 * 6, // D
3 * 6, // H
3}, // W
"Error: wrong NDHWC dimensions strides!");
h = ck::utils::conv::get_host_tensor_descriptor(dims, tl::NCDHW{});
res = ck::utils::check_err(h.GetLengths(), dims, "Error: wrong NCDHW dimensions lengths!");
res = ck::utils::check_err(h.GetStrides(),
{3 * 4 * 5 * 6, // N
4 * 5 * 6, // C
5 * 6, // D
6, // H
1}, // W
"Error: wrong NCDHW dimensions strides!");
return res;
}
......@@ -148,10 +194,11 @@ bool TestGetHostTensorDescriptor()
int main(void)
{
bool res = TestConvParams_GetOutputSpatialLengths();
std::cout << "TestConvParams_GetOutputSpatialLengths ..... " << (res ? "SUCCESS" : "FAILURE")
bool res = test_conv_params_get_output_spatial_lengths();
std::cout << "test_conv_params_get_output_spatial_lengths ..... "
<< (res ? "SUCCESS" : "FAILURE") << std::endl;
res = test_get_host_tensor_descriptor();
std::cout << "test_get_host_tensor_descriptor ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = TestGetHostTensorDescriptor();
std::cout << "TestGetHostTensorDescriptor ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return 0;
return res ? 0 : 1;
}
include_directories(BEFORE
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/external/include/half
)
add_test_executable(test_convnd_bwd_data convnd_bwd_data.cpp)
target_link_libraries(test_convnd_bwd_data PRIVATE host_tensor)
target_link_libraries(test_convnd_bwd_data PRIVATE device_convnd_bwd_data_instance)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <vector>
#include "profile_convnd_bwd_data_impl.hpp"
int main()
{
bool pass = true;
// check 1d
std::vector<ck::utils::conv::ConvParams> params;
params.push_back({1, 128, 128, 256, {1}, {14}, {2}, {1}, {0}, {0}});
params.push_back({1, 128, 128, 256, {3}, {28}, {1}, {1}, {1}, {1}});
params.push_back({1, 128, 128, 256, {1}, {3}, {1}, {1}, {0}, {0}});
for(auto& param : params)
{
pass &= ck::profiler::profile_convnd_bwd_data_impl<1,
float,
float,
float,
float,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<1,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<1,
ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
float,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<1,
int8_t,
int8_t,
int8_t,
int,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
}
// check 2d
params.clear();
params.push_back({2, 128, 128, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
params.push_back({2, 128, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
params.push_back({2, 128, 128, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
for(auto& param : params)
{
pass &= ck::profiler::profile_convnd_bwd_data_impl<2,
float,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<2,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<2,
ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<2,
int8_t,
int8_t,
int8_t,
int,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
}
// check 3d
params.clear();
params.push_back(
{3, 128, 128, 256, {1, 1, 1}, {7, 7, 7}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
params.push_back(
{3, 128, 128, 256, {3, 3, 3}, {14, 14, 14}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
params.push_back(
{3, 128, 128, 256, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
for(auto& param : params)
{
pass &= ck::profiler::profile_convnd_bwd_data_impl<3,
float,
float,
float,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<3,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<3,
ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
pass &= ck::profiler::profile_convnd_bwd_data_impl<3,
int8_t,
int8_t,
int8_t,
int,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
1, // do_verification,
1, // init_method,
0, // do_log,
1, // nrepeat,
param.N,
param.K,
param.C,
param.input_spatial_lengths,
param.filter_spatial_lengths,
param.GetOutputSpatialLengths(),
param.conv_filter_strides,
param.conv_filter_dilations,
param.input_left_pads,
param.input_right_pads);
}
if(pass)
{
std::cout << "test convnd bwd : Pass" << std::endl;
return 0;
}
else
{
std::cout << "test convnd bwd: Fail " << std::endl;
return -1;
}
}
add_test_executable(test_convnd_fwd convnd_fwd.cpp)
target_link_libraries(test_convnd_fwd PRIVATE host_tensor)
add_custom_target(test_convnd_fwd)
add_test_executable(test_conv1d_fwd conv1d_fwd.cpp)
target_link_libraries(test_conv1d_fwd PRIVATE host_tensor)
target_link_libraries(test_conv1d_fwd PRIVATE device_conv1d_fwd_instance)
add_dependencies(test_convnd_fwd test_conv1d_fwd)
add_test_executable(test_conv2d_fwd conv2d_fwd.cpp)
target_link_libraries(test_conv2d_fwd PRIVATE host_tensor)
target_link_libraries(test_conv2d_fwd PRIVATE device_conv2d_fwd_instance)
add_dependencies(test_convnd_fwd test_conv2d_fwd)
add_test_executable(test_conv3d_fwd conv3d_fwd.cpp)
target_link_libraries(test_conv3d_fwd PRIVATE host_tensor)
target_link_libraries(test_conv3d_fwd PRIVATE device_conv3d_fwd_instance)
add_dependencies(test_convnd_fwd test_conv3d_fwd)
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "conv_fwd_util.hpp"
#include "conv_util.hpp"
#include "host_tensor.hpp"
#include "tensor_layout.hpp"
#include "check_err.hpp"
// Forward declarations for conv instances.
using DeviceConvFwdNoOpPtr =
ck::tensor_operation::device::DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv1d_fwd_instance {
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv1d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
bool test_conv1D_nwc()
{
bool res{true};
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 1;
params.N = 2;
params.K = 16;
params.C = 4;
params.filter_spatial_lengths = std::vector<ck::index_t>{3};
params.input_spatial_lengths = std::vector<ck::index_t>{16};
params.conv_filter_strides = std::vector<ck::index_t>{1};
params.conv_filter_dilations = std::vector<ck::index_t>{1};
params.input_left_pads = std::vector<ck::index_t>{1};
params.input_right_pads = std::vector<ck::index_t>{1};
auto host_tensors =
ck::utils::conv::get_host_tensors<float,
float,
float,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(params);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& host_output = std::get<2>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
ck::utils::conv::run_reference_convolution_forward<1>(params, input, weights, host_output);
test::conv::RunConv<1>(params, input, weights, device_output);
res = res &&
ck::utils::check_err(
device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
return res;
}
template <typename T>
bool test_conv1d_nwc_instances(const std::vector<DeviceConvFwdNoOpPtr>& conv_ptrs)
{
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 1;
params.filter_spatial_lengths = std::vector<ck::index_t>{3};
params.input_spatial_lengths = std::vector<ck::index_t>{71};
params.conv_filter_strides = std::vector<ck::index_t>{2};
params.conv_filter_dilations = std::vector<ck::index_t>{1};
params.input_left_pads = std::vector<ck::index_t>{1};
params.input_right_pads = std::vector<ck::index_t>{1};
auto host_tensors =
ck::utils::conv::get_host_tensors<T,
T,
T,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(params);
const Tensor<T>& input = std::get<0>(host_tensors);
const Tensor<T>& weights = std::get<1>(host_tensors);
Tensor<T>& host_output = std::get<2>(host_tensors);
Tensor<T>& device_output = std::get<3>(host_tensors);
ck::utils::conv::run_reference_convolution_forward<1>(params, input, weights, host_output);
return ck::utils::conv::run_convolution_forward_instances<1>(
params, conv_ptrs, input, weights, device_output, host_output);
}
bool test_conv1d_nwc_bf16_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv1d_fwd_instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
return test_conv1d_nwc_instances<ck::bhalf_t>(conv_ptrs);
}
bool test_conv1d_nwc_f16_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv1d_fwd_instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
return test_conv1d_nwc_instances<ck::half_t>(conv_ptrs);
}
bool test_conv1d_nwc_f32_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv1d_fwd_instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
return test_conv1d_nwc_instances<float>(conv_ptrs);
}
bool test_conv1d_nwc_int8_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv1d_fwd_instance::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
return test_conv1d_nwc_instances<int8_t>(conv_ptrs);
}
} // anonymous namespace
int main()
{
bool res{true};
res = test_conv1D_nwc();
std::cout << "test_conv1D_nwc ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
res = test_conv1d_nwc_bf16_instances();
std::cout << "\nTestConv1DNWCBF16Instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv1d_nwc_f16_instances();
std::cout << "\ntest_conv1d_nwc_f16_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv1d_nwc_f32_instances();
std::cout << "\ntest_conv1d_nwc_f32_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv1d_nwc_int8_instances();
std::cout << "\ntes_tconv1_dnw_cint_8instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
return res ? 0 : 1;
}
#include <half.hpp>
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "conv_fwd_util.hpp"
#include "conv_util.hpp"
#include "host_tensor.hpp"
#include "tensor_layout.hpp"
#include "check_err.hpp"
// Forward declarations for conv instances.
using DeviceConvFwdNoOpPtr =
ck::tensor_operation::device::DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_instance {
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv2d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
bool test_conv2d_nhwc()
{
bool res{true};
ck::utils::conv::ConvParams params;
params.N = 2;
params.K = 16;
params.C = 4;
params.input_spatial_lengths = std::vector<ck::index_t>{16, 16};
params.conv_filter_strides = std::vector<ck::index_t>{1, 1};
auto host_tensors = ck::utils::conv::get_host_tensors(params);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& host_output = std::get<2>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
ck::utils::conv::run_reference_convolution_forward<2>(params, input, weights, host_output);
test::conv::RunConv<2>(params, input, weights, device_output);
res = res &&
ck::utils::check_err(
device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
return res;
}
template <typename T>
bool test_conv2d_nhwc_instances(const std::vector<DeviceConvFwdNoOpPtr>& conv_ptrs)
{
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 2;
params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3};
params.input_spatial_lengths = std::vector<ck::index_t>{71, 71};
params.conv_filter_strides = std::vector<ck::index_t>{2, 2};
params.conv_filter_dilations = std::vector<ck::index_t>{1, 1};
params.input_left_pads = std::vector<ck::index_t>{1, 1};
params.input_right_pads = std::vector<ck::index_t>{1, 1};
auto host_tensors =
ck::utils::conv::get_host_tensors<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(params);
const Tensor<T>& input = std::get<0>(host_tensors);
const Tensor<T>& weights = std::get<1>(host_tensors);
Tensor<T>& host_output = std::get<2>(host_tensors);
Tensor<T>& device_output = std::get<3>(host_tensors);
ck::utils::conv::run_reference_convolution_forward<2>(params, input, weights, host_output);
return ck::utils::conv::run_convolution_forward_instances<2>(
params, conv_ptrs, input, weights, device_output, host_output);
}
bool test_conv2d_nhwc_bf16_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
return test_conv2d_nhwc_instances<ck::bhalf_t>(conv_ptrs);
}
bool test_conv2d_nhwc_f16_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
return test_conv2d_nhwc_instances<ck::half_t>(conv_ptrs);
}
bool test_conv2d_nhwc_f32_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
return test_conv2d_nhwc_instances<float>(conv_ptrs);
}
bool test_conv2d_nhwc_int8_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
return test_conv2d_nhwc_instances<int8_t>(conv_ptrs);
}
} // anonymous namespace
int main()
{
bool res{true};
res = test_conv2d_nhwc();
std::cout << "test_conv2d_nhwc ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
res = test_conv2d_nhwc_bf16_instances();
std::cout << "\ntest_conv2d_nhwc_bf16_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv2d_nhwc_f16_instances();
std::cout << "\ntest_conv2d_nhwc_f16_instances ....." << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv2d_nhwc_f32_instances();
std::cout << "\ntest_conv2d_nhwc_f32_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv2d_nhwc_int8_instances();
std::cout << "\ntest_conv2d_nhwc_int8_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
return res ? 0 : 1;
}
#include <half.hpp>
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "conv_fwd_util.hpp"
#include "conv_util.hpp"
#include "host_tensor.hpp"
#include "tensor_layout.hpp"
#include "check_err.hpp"
// Forward declarations for conv instances.
using DeviceConvFwdNoOpPtr =
ck::tensor_operation::device::DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv3d_fwd_instance {
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv3d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
bool test_conv3d_ndhwc()
{
bool res{true};
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 3;
params.N = 2;
params.K = 16;
params.C = 4;
params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
params.input_spatial_lengths = std::vector<ck::index_t>{16, 16, 16};
params.conv_filter_strides = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads = std::vector<ck::index_t>{1, 1, 1};
auto host_tensors =
ck::utils::conv::get_host_tensors<float,
float,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(params);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& host_output = std::get<2>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
ck::utils::conv::run_reference_convolution_forward<3>(params, input, weights, host_output);
test::conv::RunConv<3>(params, input, weights, device_output);
res = res &&
ck::utils::check_err(
device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
return res;
}
bool test_conv3d_ndhwc_2gb_input()
{
// >2GB Input
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 3;
params.N = 2;
params.K = 16;
params.C = 32;
params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
params.input_spatial_lengths = std::vector<ck::index_t>{32, 1000, 1000};
params.conv_filter_strides = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads = std::vector<ck::index_t>{1, 1, 1};
auto host_tensors =
ck::utils::conv::get_host_tensors<float,
float,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(params, false);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
try
{
test::conv::RunConv<3>(params, input, weights, device_output);
}
catch(const std::runtime_error& err)
{
std::string err_msg{"Error! device_conv with the specified compilation parameters does "
"not support this Conv problem"};
if(err.what() != err_msg)
{
return false;
}
return true;
}
std::cout << "Error: Failure checking oversized tensor!" << std::endl;
return false;
}
bool test_conv3d_ndhwc_2gb_filters()
{
// >2GB Filters
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 3;
params.N = 2;
params.K = 16;
params.C = 32;
params.filter_spatial_lengths = std::vector<ck::index_t>{4, 1000, 1000};
params.input_spatial_lengths = std::vector<ck::index_t>{16, 16, 16};
params.conv_filter_strides = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads = std::vector<ck::index_t>{1, 1, 1};
auto host_tensors =
ck::utils::conv::get_host_tensors<float,
float,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(params, false);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
try
{
test::conv::RunConv<3>(params, input, weights, device_output);
}
catch(const std::runtime_error& err)
{
std::string err_msg{"Error! device_conv with the specified compilation parameters does "
"not support this Conv problem"};
if(err.what() != err_msg)
{
return false;
}
return true;
}
std::cout << "Error: Failure checking oversized tensor!" << std::endl;
return false;
}
bool test_conv3d_ndhwc_2gb_output()
{
// >2GB Output
ck::utils::conv::ConvParams params;
params.num_dim_spatial = 3;
params.N = 2;
params.K = 16;
params.C = 2;
params.filter_spatial_lengths = std::vector<ck::index_t>{1, 1, 1};
params.input_spatial_lengths = std::vector<ck::index_t>{1000, 1000, 30};
params.conv_filter_strides = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads = std::vector<ck::index_t>{2, 2, 2};
params.input_right_pads = std::vector<ck::index_t>{2, 2, 2};
auto host_tensors =
ck::utils::conv::get_host_tensors<float,
float,
float,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(params, false);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
try
{
test::conv::RunConv<3>(params, input, weights, device_output);
}
catch(const std::runtime_error& err)
{
std::string err_msg{"Error! device_conv with the specified compilation parameters does "
"not support this Conv problem"};
if(err.what() != err_msg)
{
return false;
}
return true;
}
std::cout << "Error: Failure checking oversized tensor!" << std::endl;
return false;
}
template <typename T>
bool test_conv3d_ndhwc_instances(const std::vector<DeviceConvFwdNoOpPtr>& conv_ptrs)
{
ck::utils::conv::ConvParams params;
params.N = 64;
params.num_dim_spatial = 3;
params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 2};
params.input_spatial_lengths = std::vector<ck::index_t>{32, 32, 2};
params.conv_filter_strides = std::vector<ck::index_t>{2, 2, 2};
params.conv_filter_dilations = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads = std::vector<ck::index_t>{1, 1, 1};
auto host_tensors =
ck::utils::conv::get_host_tensors<T,
T,
T,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(params);
const Tensor<T>& input = std::get<0>(host_tensors);
const Tensor<T>& weights = std::get<1>(host_tensors);
Tensor<T>& host_output = std::get<2>(host_tensors);
Tensor<T>& device_output = std::get<3>(host_tensors);
ck::utils::conv::run_reference_convolution_forward<3>(params, input, weights, host_output);
return ck::utils::conv::run_convolution_forward_instances<3>(
params, conv_ptrs, input, weights, device_output, host_output);
}
bool test_conv3d_ndhwc_bf16_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv3d_fwd_instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
return test_conv3d_ndhwc_instances<ck::bhalf_t>(conv_ptrs);
}
bool test_conv3d_ndhwc_f16_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv3d_fwd_instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
return test_conv3d_ndhwc_instances<ck::half_t>(conv_ptrs);
}
bool test_conv3d_ndhwc_f32_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv3d_fwd_instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
return test_conv3d_ndhwc_instances<float>(conv_ptrs);
}
bool test_conv3d_ndhwc_int8_instances()
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
ck::tensor_operation::device::device_conv3d_fwd_instance::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
return test_conv3d_ndhwc_instances<int8_t>(conv_ptrs);
}
} // anonymous namespace
int main()
{
bool res{true};
res = test_conv3d_ndhwc();
std::cout << "test_conv3d_ndhwc ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
res = test_conv3d_ndhwc_2gb_input();
std::cout << "\ntest_conv3d_ndhwc_2gb_input ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv3d_ndhwc_2gb_filters();
std::cout << "\ntest_conv3d_ndhwc_2gb_filters ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv3d_ndhwc_2gb_output();
std::cout << "\ntest_conv3d_ndhwc_2gb_output ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv3d_ndhwc_bf16_instances();
std::cout << "\ntest_conv3d_ndhwc_bf16_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv3d_ndhwc_f16_instances();
std::cout << "\ntest_conv3d_ndhwc_f16_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv3d_ndhwc_f32_instances();
std::cout << "\ntest_conv3d_ndhwc_f32_instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
res = test_conv3d_ndhwc_int8_instances();
std::cout << "\ntest_conv3d_ndhw_cint_8instances ..... " << (res ? "SUCCESS" : "FAILURE")
<< std::endl;
return res ? 0 : 1;
}
#ifndef TEST_CONV_UTIL_HPP
#define TEST_CONV_UTIL_HPP
#include <tuple>
#include "config.hpp"
#include "conv_fwd_util.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "sequence.hpp"
namespace {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
template <ck::index_t SpatialDims, typename InDataType, typename WeiDataType, typename OutDataType>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
// clang-format off
InDataType, //
WeiDataType, //
OutDataType, //
InDataType, //
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
SpatialDims, // SptialDims
64, // BlockSize
16, // MPerBlock
16, // NPerBlock
4, // K0PerBlock
1, // K1
16, // MPerXDL
16, // NPerXDL
1, // MXdlPerWave
1, // NXdlPerWave
S<1, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector
1, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector
1, // BBlockTransferDstScalarPerVector_K1
true, // BBlockTransferAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
// clang-format on
} // namespace
namespace test {
namespace conv {
template <ck::index_t NDim,
typename InDataType = float,
typename WeiDataType = float,
typename OutDataType = float>
void RunConv(const ck::utils::conv::ConvParams& params,
const Tensor<InDataType>& input,
const Tensor<WeiDataType>& weights,
Tensor<OutDataType>& output)
{
ck::utils::conv::run_convolution_forward<NDim,
InDataType,
WeiDataType,
OutDataType,
DeviceConvNDFwdInstance>(
params, input, weights, output);
}
} // namespace conv
} // namespace test
#endif
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "config.hpp"
#include "conv_utils.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"
#include "test_util.hpp"
namespace {
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization_t::Default;
template <ck::index_t SpatialDims, typename InDataType, typename WeiDataType, typename OutDataType>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
// clang-format off
InDataType, //
WeiDataType, //
OutDataType, //
InDataType, //
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
SpatialDims, // SptialDims
64, // BlockSize
16, // MPerBlock
16, // NPerBlock
4, // K0PerBlock
1, // K1
16, // MPerXDL
16, // NPerXDL
1, // MXdlPerWave
1, // NXdlPerWave
S<1, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector
1, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector
1, // BBlockTransferDstScalarPerVector_K1
true, // BBlockTransferAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
// clang-format on
template <typename InDataType = float,
typename WeiDataType = float,
typename OutDataType = float,
typename InLayout = ck::tensor_layout::convolution::NHWC,
typename WeiLayout = ck::tensor_layout::convolution::KYXC,
typename OutLayout = ck::tensor_layout::convolution::NHWK>
auto GetHostTensors(const ck::conv_util::ConvParams& params)
{
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.C)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths),
std::end(params.input_spatial_lengths));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
static_cast<std::size_t>(params.C)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths),
std::end(params.filter_spatial_lengths));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
static_cast<std::size_t>(params.K)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input(ck::conv_util::GetHostTensorDescriptor(input_dims, InLayout{}));
Tensor<WeiDataType> weights(ck::conv_util::GetHostTensorDescriptor(filter_dims, WeiLayout{}));
Tensor<OutDataType> host_output(
ck::conv_util::GetHostTensorDescriptor(output_dims, OutLayout{}));
Tensor<OutDataType> device_output(
ck::conv_util::GetHostTensorDescriptor(output_dims, OutLayout{}));
std::generate(input.begin(), input.end(), [n = 0]() mutable {
return InDataType(n++) * InDataType(0.1f);
});
std::fill(weights.begin(), weights.end(), WeiDataType(0.5f));
std::fill(host_output.begin(), host_output.end(), OutDataType(0.f));
std::fill(device_output.begin(), device_output.end(), OutDataType(0.f));
return std::make_tuple(input, weights, host_output, device_output);
}
template <ck::index_t NDim,
typename InDataType = float,
typename WeiDataType = float,
typename OutDataType = float>
void RunReferenceConv(const ck::conv_util::ConvParams& params,
const Tensor<InDataType>& input,
const Tensor<WeiDataType>& weights,
Tensor<OutDataType>& output)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NDim>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights,
output,
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
}
template <ck::index_t NDim,
typename InDataType = float,
typename WeiDataType = float,
typename OutDataType = float>
void RunConv(const ck::conv_util::ConvParams& params,
const Tensor<InDataType>& input,
const Tensor<WeiDataType>& weights,
Tensor<OutDataType>& output)
{
DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(weights.mData.data());
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
auto conv = DeviceConvNDFwdInstance<NDim, InDataType, WeiDataType, OutDataType>();
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N,
params.K,
params.C,
params.input_spatial_lengths,
params.filter_spatial_lengths,
output_spatial_lengths,
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"Error! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
invoker.Run(argument);
out_device_buf.FromDevice(output.mData.data());
}
bool TestConv2DNHWC()
{
bool res{true};
ck::conv_util::ConvParams params;
params.N = 2;
params.K = 16;
params.C = 4;
params.input_spatial_lengths = std::vector<ck::index_t>{16, 16};
params.conv_filter_strides = std::vector<ck::index_t>{1, 1};
auto host_tensors = GetHostTensors(params);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& host_output = std::get<2>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
RunReferenceConv<2>(params, input, weights, host_output);
RunConv<2>(params, input, weights, device_output);
res = res &&
test_util::check_err(
device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
return res;
}
bool TestConv1DNWC()
{
bool res{true};
ck::conv_util::ConvParams params;
params.num_dim_spatial = 1;
params.N = 2;
params.K = 16;
params.C = 4;
params.filter_spatial_lengths = std::vector<ck::index_t>{3};
params.input_spatial_lengths = std::vector<ck::index_t>{16};
params.conv_filter_strides = std::vector<ck::index_t>{1};
params.conv_filter_dilations = std::vector<ck::index_t>{1};
params.input_left_pads = std::vector<ck::index_t>{1};
params.input_right_pads = std::vector<ck::index_t>{1};
auto host_tensors = GetHostTensors<float,
float,
float,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(params);
const Tensor<float>& input = std::get<0>(host_tensors);
const Tensor<float>& weights = std::get<1>(host_tensors);
Tensor<float>& host_output = std::get<2>(host_tensors);
Tensor<float>& device_output = std::get<3>(host_tensors);
RunReferenceConv<1>(params, input, weights, host_output);
RunConv<1>(params, input, weights, device_output);
res = res &&
test_util::check_err(
device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
return res;
}
} // anonymous namespace
int main()
{
bool res{true};
res = TestConv1DNWC();
std::cout << "TestConv1DNWC ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
res = TestConv2DNHWC();
std::cout << "TestConv2DNHWC ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
......@@ -2,6 +2,10 @@ add_test_executable(test_gemm_fp32 gemm_fp32.cpp)
target_link_libraries(test_gemm_fp32 PRIVATE host_tensor)
target_link_libraries(test_gemm_fp32 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_fp16 gemm_fp16.cpp)
target_link_libraries(test_gemm_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_fp16 PRIVATE device_gemm_instance)
add_test_executable(test_gemm_bf16 gemm_bf16.cpp)
target_link_libraries(test_gemm_bf16 PRIVATE host_tensor)
target_link_libraries(test_gemm_bf16 PRIVATE device_gemm_instance)
......
......@@ -19,11 +19,10 @@
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
......@@ -32,132 +31,86 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
using BF16 = ck::bhalf_t;
using ADataType = BF16;
using BDataType = BF16;
using CDataType = BF16;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
// use fp32 host kernel to verify bf16 device kernel
Tensor<ADataType> a_m_k_bf16(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n_bf16(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_device_bf16(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<float> a_m_k_fp32(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<float> b_k_n_fp32(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<float> c_m_n_host_fp32(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<float> c_m_n_device_fp32(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k_bf16.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n_bf16.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
bf16_to_f32_(a_m_k_bf16, a_m_k_fp32);
bf16_to_f32_(b_k_n_bf16, b_k_n_fp32);
return std::make_tuple(a_m_k_bf16,
b_k_n_bf16,
c_m_n_device_bf16,
a_m_k_fp32,
b_k_n_fp32,
c_m_n_host_fp32,
c_m_n_device_fp32);
}
bool TestGemm(DeviceGemmPtr_& gemmPtr)
int main()
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a_bf16 = std::get<0>(host_tensors);
const Tensor<BDataType>& b_bf16 = std::get<1>(host_tensors);
Tensor<CDataType>& c_device_bf16 = std::get<2>(host_tensors);
Tensor<float>& a_fp32 = std::get<3>(host_tensors);
Tensor<float>& b_fp32 = std::get<4>(host_tensors);
Tensor<float>& c_host_fp32 = std::get<5>(host_tensors);
Tensor<float>& c_device_fp32 = std::get<6>(host_tensors);
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
// use fp32 host kernel to verify bf16 device kernel
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<float, float, float, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a_fp32, b_fp32, c_host_fp32, a_element_op, b_element_op, c_element_op);
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a_bf16, b_bf16, c_device_bf16, a_element_op, b_element_op, c_element_op);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances(gemmPtrs);
bf16_to_f32_(c_device_bf16, c_device_fp32);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemmBF16<DeviceGemmNoOpPtr,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
// Assert
bool res = test_util::check_err(
c_device_fp32.mData, c_host_fp32.mData, "Error: incorrect results!", 1e-2f, 1e-3f);
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances(gemmPtrs);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemmBF16<DeviceGemmNoOpPtr,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
return res;
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(gemmPtrs);
} // anonymous namespace
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemmBF16<DeviceGemmNoOpPtr,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
res &= ck::gemm_util::TestGemmBF16<DeviceGemmNoOpPtr,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "gemm_specialization.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
int main()
{
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
......@@ -19,11 +19,10 @@
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
......@@ -32,107 +31,124 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
int main()
{
using ADataType = float;
using BDataType = float;
using CDataType = float;
using ADataType = float;
using BDataType = float;
using CDataType = float;
using AccDataType = float;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
bool res = true;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances(gemmPtrs);
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
}
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
bool TestGemm(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a = std::get<0>(host_tensors);
const Tensor<BDataType>& b = std::get<1>(host_tensors);
Tensor<CDataType>& c_host = std::get<2>(host_tensors);
Tensor<CDataType>& c_device = std::get<3>(host_tensors);
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = test_util::check_err(
c_device.mData, c_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances(gemmPtrs);
} // anonymous namespace
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
......@@ -19,11 +19,10 @@
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
using DeviceGemmNoOpPtr =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
......@@ -32,106 +31,102 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
int main()
{
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using AccDataType = int32_t;
using RowMajor = ck::tensor_layout::gemm::RowMajor;
using ColumnMajor = ck::tensor_layout::gemm::ColumnMajor;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
std::vector<DeviceGemmNoOpPtr> gemmPtrs;
bool res = true;
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
}
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(gemmPtrs);
bool TestGemm(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a = std::get<0>(host_tensors);
const Tensor<BDataType>& b = std::get<1>(host_tensors);
Tensor<CDataType>& c_host = std::get<2>(host_tensors);
Tensor<CDataType>& c_device = std::get<3>(host_tensors);
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = test_util::check_err(c_device.mData, c_host.mData, "Error: incorrect results!");
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
}
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
} // anonymous namespace
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(gemmPtrs);
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
ColumnMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemmPtrs);
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
RowMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
gemmPtrs.clear();
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemmPtrs);
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
res &= ck::gemm_util::TestGemm<DeviceGemmNoOpPtr,
ADataType,
BDataType,
CDataType,
RowMajor,
ColumnMajor,
RowMajor,
PassThrough,
PassThrough,
PassThrough>{}(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res ? 0 : 1;
}
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_gemm.hpp"
#include "tensor_layout.hpp"
namespace ck {
namespace gemm_util {
......@@ -98,6 +102,239 @@ void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
c_m_n_device_buf.FromDevice(C.mData.data());
}
template <typename DeviceGemmPtr_,
typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct TestGemm
{
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
auto f_generate_tensor_value = [](auto desc, auto type) {
using dataType = decltype(type);
if(std::is_same<dataType, int8_t>::value)
{
desc.GenerateTensorValue(GeneratorTensor_2<int8_t>{-5, 5});
}
else
{
desc.GenerateTensorValue(GeneratorTensor_3<dataType>{-0.5, 0.5});
}
};
f_generate_tensor_value(a_m_k, ADataType{});
f_generate_tensor_value(b_k_n, BDataType{});
return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
}
auto operator()(DeviceGemmPtr_& gemmPtr)
{
std::cout << "ALayout = " << ALayout{}.name << ", BLayout = " << BLayout{}.name
<< ", CLayout = " << CLayout{}.name << std::endl;
std::cout << gemmPtr->GetTypeString() << std::endl;
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a = std::get<0>(host_tensors);
const Tensor<BDataType>& b = std::get<1>(host_tensors);
Tensor<CDataType>& c_host = std::get<2>(host_tensors);
Tensor<CDataType>& c_device = std::get<3>(host_tensors);
auto a_element_op = AElementwiseOperation{};
auto b_element_op = BElementwiseOperation{};
auto c_element_op = CElementwiseOperation{};
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = false;
if(std::is_same<CDataType, float>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, ck::half_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, int8_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
return res;
}
};
template <typename DeviceGemmPtr_,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct TestGemmBF16
{
using BF16 = ck::bhalf_t;
auto PrepareGemmTensorBF16(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
// use fp32 host kernel to verify bf16 device kernel
Tensor<BF16> a_m_k_bf16(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BF16> b_k_n_bf16(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<BF16> c_m_n_device_bf16(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<float> a_m_k_fp32(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<float> b_k_n_fp32(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<float> c_m_n_host_fp32(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<float> c_m_n_device_fp32(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
b_k_n_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
bf16_to_f32_(a_m_k_bf16, a_m_k_fp32);
bf16_to_f32_(b_k_n_bf16, b_k_n_fp32);
return std::make_tuple(a_m_k_bf16,
b_k_n_bf16,
c_m_n_device_bf16,
a_m_k_fp32,
b_k_n_fp32,
c_m_n_host_fp32,
c_m_n_device_fp32);
}
auto operator()(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensorBF16(params);
const Tensor<BF16>& a_bf16 = std::get<0>(host_tensors);
const Tensor<BF16>& b_bf16 = std::get<1>(host_tensors);
Tensor<BF16>& c_device_bf16 = std::get<2>(host_tensors);
Tensor<float>& a_fp32 = std::get<3>(host_tensors);
Tensor<float>& b_fp32 = std::get<4>(host_tensors);
Tensor<float>& c_host_fp32 = std::get<5>(host_tensors);
Tensor<float>& c_device_fp32 = std::get<6>(host_tensors);
auto a_element_op = AElementwiseOperation{};
auto b_element_op = BElementwiseOperation{};
auto c_element_op = CElementwiseOperation{};
// use fp32 host kernel to verify bf16 device kernel
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemm<float,
float,
float,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a_fp32, b_fp32, c_host_fp32, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(gemmPtr,
params,
a_bf16,
b_bf16,
c_device_bf16,
a_element_op,
b_element_op,
c_element_op);
bf16_to_f32_(c_device_bf16, c_device_fp32);
// Assert
bool res = ck::utils::check_err(
c_device_fp32.mData, c_host_fp32.mData, "Error: incorrect results!", 1e-2f, 1e-3f);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
};
};
} // namespace gemm_util
} // namespace ck
#endif
include_directories(BEFORE
${PROJECT_SOURCE_DIR}/profiler/include
${PROJECT_SOURCE_DIR}/test/include
${PROJECT_SOURCE_DIR}/external/include/half
)
add_test_executable(test_gemm_reduce_fp16 gemm_reduce_fp16.cpp)
target_link_libraries(test_gemm_reduce_fp16 PRIVATE host_tensor)
target_link_libraries(test_gemm_reduce_fp16 PRIVATE device_gemm_reduce_instance)
#include <iostream>
#include "profile_gemm_reduce_impl.hpp"
int main()
{
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
int M = 512;
int N = 256;
int K = 128;
bool pass = true;
pass = pass &&
ck::profiler::
profile_gemm_reduce_impl<ck::half_t, ck::half_t, ck::half_t, float, Row, Row, Row>(
true, 1, false, 1, M, N, K, K, N, N);
pass = pass &&
ck::profiler::
profile_gemm_reduce_impl<ck::half_t, ck::half_t, ck::half_t, float, Row, Col, Row>(
true, 1, false, 1, M, N, K, K, K, N);
pass = pass &&
ck::profiler::
profile_gemm_reduce_impl<ck::half_t, ck::half_t, ck::half_t, float, Col, Row, Row>(
true, 1, false, 1, M, N, K, M, N, N);
pass = pass &&
ck::profiler::
profile_gemm_reduce_impl<ck::half_t, ck::half_t, ck::half_t, float, Col, Col, Row>(
true, 1, false, 1, M, N, K, M, K, N);
if(pass)
{
std::cout << "test GEMM+Reduce fp16: Pass" << std::endl;
return 0;
}
else
{
std::cout << "test GEMM+Reduce fp16: Fail" << std::endl;
return -1;
}
}
......@@ -12,7 +12,7 @@
#include "tensor_layout.hpp"
#include "device_gemm_xdl_splitk.hpp"
enum GemmMatrixLayout
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
......@@ -59,7 +59,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
struct gemmArgs
{
int layout;
GemmMatrixLayout layout;
int M;
int N;
int K;
......@@ -120,7 +120,7 @@ int test_gemm(const gemmArgs& args)
f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
// init data
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t num_thread = 1;
a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
// set zero to c_device_buf
......@@ -216,13 +216,13 @@ int main(int argc, char* argv[])
std::vector<gemmArgs> test_cases;
if(argc == 1)
{
test_cases = {{0, 3, 3, 3, 3, 3, 3, 1}};
test_cases = {{GemmMatrixLayout::MK_KN_MN, 3, 3, 3, 3, 3, 3, 1}};
// JD: Populate with more and meaningful
return 0;
}
else if(argc == 9)
{
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
const int M = std::stoi(argv[2]);
const int N = std::stoi(argv[3]);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment