Commit dd6a8de4 authored by Jehandad Khan's avatar Jehandad Khan
Browse files

Merge branch 'develop' into jd/dev_pkg

parents 0aa899aa abf4bdb9
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
......@@ -7,7 +9,7 @@
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "device_gemm_bias.hpp"
#include "reference_gemm_bias_2d.hpp"
namespace ck {
......@@ -98,7 +100,7 @@ void profile_gemm_bias_2d_impl(int do_verification,
std::cout << "c0_m_n: " << c0_m_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
......@@ -283,7 +285,7 @@ void profile_gemm_bias_2d_impl(int do_verification,
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
check_error(c_m_n_host_result, c_m_n_device_result);
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
......
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
......@@ -257,7 +259,7 @@ void profile_gemm_bias_relu_add_impl(int do_verification,
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
check_error(c_m_n_host_result, c_m_n_device_result);
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
......
#pragma once
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
......@@ -83,7 +85,7 @@ void profile_gemm_bias_relu_impl(int do_verification,
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n: " << c0_n.mDesc << std::endl;
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
......@@ -236,7 +238,7 @@ void profile_gemm_bias_relu_impl(int do_verification,
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
check_error(c_m_n_host_result, c_m_n_device_result);
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
......
#pragma once
#include <iomanip>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
......@@ -26,16 +28,28 @@ void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNo
void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmNoOpPtr>&);
......@@ -45,6 +59,11 @@ void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNo
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
......@@ -103,7 +122,7 @@ void profile_gemm_impl(int do_verification,
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
......@@ -127,11 +146,6 @@ void profile_gemm_impl(int do_verification,
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
// if(do_verification)
// {
// }
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
......@@ -159,6 +173,9 @@ void profile_gemm_impl(int do_verification,
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
......@@ -174,6 +191,9 @@ void profile_gemm_impl(int do_verification,
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
......@@ -189,6 +209,9 @@ void profile_gemm_impl(int do_verification,
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
......@@ -204,6 +227,9 @@ void profile_gemm_impl(int do_verification,
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
}
}
}
......@@ -291,23 +317,65 @@ void profile_gemm_impl(int do_verification,
is_same<CDataType, ck::bhalf_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
is_same<CDataType, int8_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_km_nk_mn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
......@@ -342,6 +410,10 @@ void profile_gemm_impl(int do_verification,
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init C to zero before profiling next kernel
c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
......@@ -400,7 +472,7 @@ void profile_gemm_impl(int do_verification,
ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_f32_result);
ck::utils::check_err(c_m_n_device_f32_result.mData, c_m_n_host_result.mData);
if(do_log)
{
......@@ -429,7 +501,7 @@ void profile_gemm_impl(int do_verification,
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result);
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
if(do_log)
{
......
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::ReduceSum,
ck::tensor_operation::element_wise::ReduceSquareSum>;
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&);
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&);
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&);
void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmReduceNoOpPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename ALayout,
typename BLayout,
typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
int init_method,
bool do_log,
int nrepeat,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC)
{
bool pass = true;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d0_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<DDataType> d1_m_host_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<DDataType> d0_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
Tensor<DDataType> d1_m_device_result(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl;
std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl;
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
std::srand(0);
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break;
default:
std::srand(0);
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using D0ReduceOp = ck::tensor_operation::element_wise::ReduceSum;
using D1ReduceOp = ck::tensor_operation::element_wise::ReduceSquareSum;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
const auto d0_reduce_op = D0ReduceOp{};
const auto d1_reduce_op = D1ReduceOp{};
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
float d0_acc = d0_reduce_op.GetReduceZeroValue();
float d1_acc = d1_reduce_op.GetReduceZeroValue();
for(int n = 0; n < N; ++n)
{
d0_reduce_op.Reduce(d0_acc, c_m_n_host_result(m, n));
d1_reduce_op.Reduce(d1_acc, c_m_n_host_result(m, n));
}
d0_m_host_result(m) = d0_acc;
d1_m_host_result(m) = d1_acc;
}
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace());
DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op,
d0_reduce_op,
d1_reduce_op);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
// warm up
invoker_ptr->Run(argument_ptr.get());
// timing
float total_time = 0;
for(int i = 0; i < nrepeat; ++i)
{
// init DO, D1 to 0
d0_device_buf.SetZero();
d1_device_buf.SetZero();
KernelTimer timer;
timer.Start();
invoker_ptr->Run(argument_ptr.get());
timer.End();
total_time += timer.GetElapsedTime();
}
float ave_time = total_time / nrepeat;
std::string gemm_name = gemm_ptr->GetTypeString();
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
sizeof(CDataType) * M * N + sizeof(CDataType) * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
d0_device_buf.FromDevice(d0_m_device_result.mData.data());
d1_device_buf.FromDevice(d1_m_device_result.mData.data());
float c_error = check_error(c_m_n_host_result, c_m_n_device_result);
float d0_error = check_error(d0_m_host_result, d0_m_device_result);
float d1_error = check_error(d1_m_host_result, d1_m_device_result);
pass = pass && (c_error < 1E-6);
pass = pass && (d0_error < 1E-6);
pass = pass && (d1_error < 1E-6);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "d0_host: ", d0_m_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "d0_device: ", d0_m_device_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "d1_host: ", d1_m_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "d1_device: ", d1_m_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << "does not support this GEMM problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
#pragma once
#include <iomanip>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {
using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGroupedGemmNoOpPtr>&);
} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
int init_method,
bool do_log,
int nrepeat,
std::vector<int> Ms,
std::vector<int> Ns,
std::vector<int> Ks,
std::vector<int> StrideAs,
std::vector<int> StrideBs,
std::vector<int> StrideCs)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
int group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size()))
{
throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
}
std::vector<Tensor<ADataType>> a_m_k;
std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_device_results;
for(int i = 0; i < Ms.size(); i++)
{
a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
b_k_n.push_back(
Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));
c_m_n_device_results.push_back(
Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
<< "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
<< "]:" << c_m_n_device_results[i].mDesc << std::endl;
std::size_t num_thread = 1;
switch(init_method)
{
case 0: break;
case 1:
a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
break;
default:
a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
}
c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
}
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{};
// if(do_verification)
// {
// }
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
a_device_buf.reserve(group_count);
b_device_buf.reserve(group_count);
c_device_buf.reserve(group_count);
std::vector<const void*> p_a, p_b;
std::vector<void*> p_c;
p_a.reserve(group_count);
p_b.reserve(group_count);
p_c.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;
gemm_shapes.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()));
b_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace()));
c_device_buf.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpace()));
a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());
gemm_shapes.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i]});
p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
}
// add device GEMM instances
std::vector<
ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_grouped_gemm_instance::
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_grouped_gemm_instance::
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_grouped_gemm_instance::
add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_grouped_gemm_instance::
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(p_a,
p_b,
p_c,
gemm_shapes,
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{},
ck::tensor_operation::element_wise::PassThrough{});
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < gemm_shapes.size(); i++)
{
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + sizeof(BDataType) * Ks[i] * Ns[i] +
sizeof(CDataType) * Ms[i] * Ns[i];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
for(int i = 0; i < gemm_shapes.size(); i++)
{
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
b_k_n[i],
c_m_n_host_result,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
ck::utils::check_err(c_m_n_device_results[i].mData, c_m_n_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
LogRangeAsType<float>(
std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
}
}
}
}
else
{
std::cout << "does not support this GEMM problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
} // namespace profiler
} // namespace profiler
} // namespace ck
#pragma once
#include "check_err.hpp"
#include "device_reduce.hpp"
#include "device_reduce_instance.hpp"
#include "reduction_enums.hpp"
#include "host_generic_reduction.hpp"
#include "host_reduction.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
template <int Rank, typename ReduceDims, int ReduceOpId, int NanOpt, int IndicesOpt>
template <int Rank, int NumReduceDim, int ReduceOpId, int NanOpt, int IndicesOpt>
struct ReduceDescription
{
static constexpr int Rank_ = Rank;
static constexpr int NumReduceDim_ = NumReduceDim;
static constexpr int ReduceOpId_ = ReduceOpId;
static constexpr int NanOpt_ = NanOpt;
static constexpr int IndicesOpt_ = IndicesOpt;
using ReduceDims_ = ReduceDims;
};
using reduce_description_instances =
std::tuple<ReduceDescription<4, Sequence<0, 1, 2>, 0, 0, 0>, // for ADD
ReduceDescription<4, Sequence<0>, 0, 0, 0>,
ReduceDescription<2, Sequence<1>, 0, 0, 0>,
ReduceDescription<4, Sequence<0, 1, 2>, 5, 0, 0>, // for AVG
ReduceDescription<4, Sequence<0>, 5, 0, 0>,
ReduceDescription<2, Sequence<1>, 5, 0, 0>,
ReduceDescription<4, Sequence<0, 1, 2>, 7, 0, 0>, // for NORM2
ReduceDescription<4, Sequence<0>, 7, 0, 0>,
ReduceDescription<2, Sequence<1>, 7, 0, 0>,
ReduceDescription<4, Sequence<0, 1, 2>, 2, 0, 0>, // for MIN
ReduceDescription<4, Sequence<0>, 2, 0, 0>,
ReduceDescription<2, Sequence<1>, 2, 0, 0>,
ReduceDescription<4, Sequence<0, 1, 2>, 3, 0, 0>, // for MAX
ReduceDescription<4, Sequence<0>, 3, 0, 0>,
ReduceDescription<2, Sequence<1>, 3, 0, 0>,
ReduceDescription<4, Sequence<0, 1, 2>, 4, 0, 0>, // for AMAX
ReduceDescription<4, Sequence<0>, 4, 0, 0>,
ReduceDescription<2, Sequence<1>, 4, 0, 0>,
ReduceDescription<4, Sequence<0, 1, 2>, 2, 0, 1>, // for MIN
ReduceDescription<4, Sequence<0>, 2, 0, 1>,
ReduceDescription<2, Sequence<1>, 2, 0, 1>,
ReduceDescription<4, Sequence<0, 1, 2>, 3, 0, 1>, // for MAX
ReduceDescription<4, Sequence<0>, 3, 0, 1>,
ReduceDescription<2, Sequence<1>, 3, 0, 1>,
ReduceDescription<4, Sequence<0, 1, 2>, 4, 0, 1>, // for AMAX
ReduceDescription<4, Sequence<0>, 4, 0, 1>,
ReduceDescription<2, Sequence<1>, 4, 0, 1>>;
using reduce_description_instances = std::tuple<ReduceDescription<4, 3, 0, 0, 0>, // for ADD
ReduceDescription<4, 4, 0, 0, 0>,
ReduceDescription<4, 1, 0, 0, 0>,
ReduceDescription<2, 1, 0, 0, 0>,
ReduceDescription<4, 3, 5, 0, 0>, // for AVG
ReduceDescription<4, 4, 5, 0, 0>,
ReduceDescription<4, 1, 5, 0, 0>,
ReduceDescription<2, 1, 5, 0, 0>,
ReduceDescription<4, 3, 7, 0, 0>, // for NORM2
ReduceDescription<4, 4, 7, 0, 0>,
ReduceDescription<4, 1, 7, 0, 0>,
ReduceDescription<2, 1, 7, 0, 0>,
ReduceDescription<4, 3, 2, 0, 0>, // for MIN
ReduceDescription<4, 4, 2, 0, 0>,
ReduceDescription<4, 1, 2, 0, 0>,
ReduceDescription<2, 1, 2, 0, 0>,
ReduceDescription<4, 3, 3, 0, 0>, // for MAX
ReduceDescription<4, 4, 3, 0, 0>,
ReduceDescription<4, 1, 3, 0, 0>,
ReduceDescription<2, 1, 3, 0, 0>,
ReduceDescription<4, 3, 4, 0, 0>, // for AMAX
ReduceDescription<4, 4, 4, 0, 0>,
ReduceDescription<4, 1, 4, 0, 0>,
ReduceDescription<2, 1, 4, 0, 0>,
ReduceDescription<4, 3, 2, 0, 1>, // for MIN
ReduceDescription<4, 4, 2, 0, 1>,
ReduceDescription<4, 1, 2, 0, 1>,
ReduceDescription<2, 1, 2, 0, 1>,
ReduceDescription<4, 3, 3, 0, 1>, // for MAX
ReduceDescription<4, 4, 3, 0, 1>,
ReduceDescription<4, 1, 3, 0, 1>,
ReduceDescription<2, 1, 3, 0, 1>,
ReduceDescription<4, 3, 4, 0, 1>, // for AMAX
ReduceDescription<4, 4, 4, 0, 1>,
ReduceDescription<4, 1, 4, 0, 1>,
ReduceDescription<2, 1, 4, 0, 1>>;
template <typename DescriptionType>
bool description_match(const DescriptionType& description,
int Rank,
const std::vector<int>& ReduceDims,
ReduceTensorOp_t ReduceOpId,
NanPropagation_t NanOpt,
ReduceTensorIndices_t IndicesOpt)
const std::vector<int>& reduceDims,
ReduceTensorOp ReduceOpId,
NanPropagation NanOpt,
ReduceTensorIndices IndicesOpt)
{
if(description.Rank_ != Rank || description.ReduceOpId_ != static_cast<int>(ReduceOpId) ||
description.NanOpt_ != static_cast<int>(NanOpt) ||
description.IndicesOpt_ != static_cast<int>(IndicesOpt))
return (false);
if(DescriptionType::ReduceDims_::Size() != ReduceDims.size())
if(DescriptionType::NumReduceDim_ != reduceDims.size())
return (false);
bool result = true;
static_for<0, DescriptionType::ReduceDims_::Size(), 1>{}([&](auto i) {
if(DescriptionType::ReduceDims_::At(i) != ReduceDims[i])
result = false;
});
return (result);
};
......@@ -87,33 +91,29 @@ bool description_match(const DescriptionType& description,
namespace ck {
namespace profiler {
template <int Rank, typename ReduceDims>
static std::vector<int> get_reduce_dims()
template <index_t Rank, index_t NumReduceDim>
static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
{
std::vector<int> resDims;
assert(NumReduceDim == reduceDims.size());
static_for<0, ReduceDims::Size(), 1>{}([&](auto i) { resDims.push_back(ReduceDims::At(i)); });
int reduceFlag = 0;
return (resDims);
};
template <int Rank, typename ReduceDims>
static std::vector<int> get_invariant_dims()
{
std::vector<int> resDims;
unsigned int incFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
static_for<0, ReduceDims::Size(), 1>{}(
[&](auto i) { incFlag = incFlag | (0x1 << ReduceDims::At(i)); });
std::vector<int> invariantDims;
for(int dim = 0; dim < Rank; dim++)
// collect invariant dimensions
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
if(incFlag & (0x1 << dim))
continue;
resDims.push_back(dim);
invariantDims.push_back(i);
};
return (resDims);
return invariantDims;
};
template <typename T>
......@@ -133,32 +133,33 @@ static void dumpBufferToFile(const char* fileName, T* data, size_t dataNumItems)
};
// map the data type used by the GPU kernels to the corresponding type used by the host codes
template <typename inDataType>
template <typename InType>
struct type_mapping
{
using outDataType = inDataType;
using OutType = InType;
};
template <>
struct type_mapping<ck::half_t>
{
using outDataType = half_float::half;
using OutType = half_float::half;
};
template <typename InDataType,
typename AccDataType,
typename OutDataType,
int Rank,
typename ReduceDims_,
ReduceTensorOp_t ReduceOpId,
NanPropagation_t NanOpt,
ReduceTensorIndices_t IndicesOpt>
int NumReduceDim,
ReduceTensorOp ReduceOpId,
NanPropagation NanOpt,
ReduceTensorIndices IndicesOpt>
void profile_reduce_impl_impl(bool do_verification,
int init_method,
bool do_log,
bool do_dumpout,
int nrepeat,
const std::vector<size_t>& inLengths,
const std::vector<int>& reduceDims,
float alpha,
float beta)
{
......@@ -167,17 +168,17 @@ void profile_reduce_impl_impl(bool do_verification,
using namespace ck::host_reduce;
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp_t::MIN || ReduceOpId == ReduceTensorOp_t::MAX ||
ReduceOpId == ReduceTensorOp_t::AMAX);
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
constexpr bool NeedIndices =
(op_support_indices && (IndicesOpt != ReduceTensorIndices_t::NO_INDICES));
(op_support_indices && (IndicesOpt != ReduceTensorIndices::NO_INDICES));
constexpr bool PropagateNan = (NanOpt == NanPropagation_t::PROPAGATE_NAN);
constexpr bool PropagateNan = (NanOpt == NanPropagation::PROPAGATE_NAN);
constexpr bool out_support_atomic_add = std::is_same<OutDataType, float>::value;
constexpr bool op_support_atomic_add =
!op_support_indices && ReduceOpId != ReduceTensorOp_t::NORM2;
!op_support_indices && ReduceOpId != ReduceTensorOp::NORM2;
constexpr bool use_atomic_add = (out_support_atomic_add && op_support_atomic_add);
// 1) If InDataType is half_t, must use half_t as AccDataType for indexable reduction operations
......@@ -195,29 +196,47 @@ void profile_reduce_impl_impl(bool do_verification,
// 1) The indices can only be used when the reduction operation is indexable
constexpr bool invalid_reduce_3 =
(!op_support_indices && IndicesOpt != ReduceTensorIndices_t::NO_INDICES);
(!op_support_indices && IndicesOpt != ReduceTensorIndices::NO_INDICES);
// 1) If InDataType is int8_t, must use int8_t as AccDataType for indexable reduction operations
// 2) If InDataType is int8_t, must use int32_t as AccDataType for non-indexable reduction
// operations
constexpr bool invalid_reduce_4 =
std::is_same<InDataType, int8_t>::value &&
((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
(op_support_indices && !std::is_same<AccDataType, int8_t>::value));
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);
// 1) If InDataType is int8_t, the supported operation must be either indexable operations or
// ADD/AVG
constexpr bool invalid_reduce_5 = std::is_same<InDataType, int8_t>::value &&
(!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
ReduceOpId != ReduceTensorOp::AVG);
// 1) If InDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr bool invalid_reduce_6 =
std::is_same<InDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
if constexpr(!invalid_reduce)
{
Tensor<InDataType> in(inLengths);
const std::vector<int> OuterDims = get_invariant_dims<Rank, ReduceDims_>();
const std::vector<int> ReduceDims = get_reduce_dims<Rank, ReduceDims_>();
std::vector<size_t> outLengths;
if(OuterDims.empty())
const auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
if(reduceDims.size() == Rank)
outLengths.push_back(1);
else
for(auto dim : OuterDims)
for(auto dim : invariantDims)
outLengths.push_back(inLengths[dim]);
Tensor<OutDataType> out_ref(outLengths);
Tensor<OutDataType> out(outLengths);
Tensor<int> out_indices_ref(outLengths);
Tensor<int> out_indices(outLengths);
Tensor<int32_t> out_indices_ref(outLengths);
Tensor<int32_t> out_indices(outLengths);
auto inStrides = in.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
......@@ -225,26 +244,28 @@ void profile_reduce_impl_impl(bool do_verification,
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = std::thread::hardware_concurrency();
std::size_t num_thread = 1;
if(do_verification)
{
switch(init_method)
{
case 0:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
break;
case 1:
case 2:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
break;
default:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
......@@ -302,7 +323,7 @@ void profile_reduce_impl_impl(bool do_verification,
AccDataType,
OutDataType,
Rank,
ReduceDims_,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
......@@ -311,40 +332,46 @@ void profile_reduce_impl_impl(bool do_verification,
AccDataType,
OutDataType,
Rank,
ReduceDims_,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
if constexpr(use_atomic_add)
{
add_device_reduce_instance_multiblock_atomic_add<InDataType,
AccDataType,
OutDataType,
Rank,
ReduceDims_,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce0_ptrs);
}
else
{
add_device_reduce_instance_multiblock_partial_reduce<InDataType,
AccDataType,
OutDataType,
Rank,
ReduceDims_,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce1_ptrs);
};
// used for secondary reduction
if constexpr(!use_atomic_add)
{
add_device_reduce_instance_blockwise_second_call<AccDataType,
AccDataType,
OutDataType,
Rank,
ReduceDims_,
NumReduceDim,
ReduceOpId,
NanOpt,
IndicesOpt>(reduce2_ptrs);
};
if(reduce0_ptrs.empty() && reduce1_ptrs.empty())
{
......@@ -353,17 +380,24 @@ void profile_reduce_impl_impl(bool do_verification,
if(do_verification)
{
using hInType = typename type_mapping<InDataType>::outDataType;
using hOutType = typename type_mapping<OutDataType>::outDataType;
using hCompType = typename type_mapping<AccDataType>::outDataType;
using HostInDataType = typename type_mapping<InDataType>::OutType;
using HostOutDataType = typename type_mapping<OutDataType>::OutType;
using HostAccDataType = typename type_mapping<AccDataType>::OutType;
ReductionHost<hInType, hCompType, hOutType, ReduceOpId, PropagateNan, NeedIndices>
hostReduce(in.mDesc, out_ref.mDesc, OuterDims, ReduceDims);
ReductionHost<HostInDataType,
HostAccDataType,
HostOutDataType,
ReduceOpId,
Rank,
NumReduceDim,
PropagateNan,
NeedIndices>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha,
reinterpret_cast<const hInType*>(in.mData.data()),
reinterpret_cast<const HostInDataType*>(in.mData.data()),
beta,
reinterpret_cast<hOutType*>(out_ref.mData.data()),
reinterpret_cast<HostOutDataType*>(out_ref.mData.data()),
out_indices_ref.mData.data());
};
......@@ -374,23 +408,27 @@ void profile_reduce_impl_impl(bool do_verification,
for(auto& reduce_ptr : reduce0_ptrs)
{
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths);
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
auto argument_ptr = reduce_ptr->MakeArgumentPointer(
i_inLengths,
InElementwiseOperation_0 in_elementwise_op_0(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_0 acc_elementwise_op_0(
static_cast<int32_t>(reduce_total_length));
auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
InElementwiseOperation_0{static_cast<int32_t>(reduce_total_length)},
AccElementwiseOperation_0{static_cast<int32_t>(reduce_total_length)});
in_elementwise_op_0,
acc_elementwise_op_0);
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue;
......@@ -419,12 +457,13 @@ void profile_reduce_impl_impl(bool do_verification,
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
check_error(out_ref, out);
ck::utils::check_err(out.mData, out_ref.mData);
if(NeedIndices)
{
out_indices_dev.FromDevice(out_indices.mData.data());
check_indices(out_indices_ref, out_indices);
ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
;
};
if(do_log)
......@@ -455,23 +494,27 @@ void profile_reduce_impl_impl(bool do_verification,
for(auto& reduce_ptr : reduce1_ptrs)
{
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths);
auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
auto argument_ptr = reduce_ptr->MakeArgumentPointer(
i_inLengths,
InElementwiseOperation_1 in_elementwise_op_1(static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_1 acc_elementwise_op_1(
static_cast<int32_t>(reduce_total_length));
auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
InElementwiseOperation_1{static_cast<int32_t>(reduce_total_length)},
AccElementwiseOperation_1{static_cast<int32_t>(reduce_total_length)});
in_elementwise_op_1,
acc_elementwise_op_1);
if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
continue;
......@@ -491,19 +534,25 @@ void profile_reduce_impl_impl(bool do_verification,
for(auto& reduce2_ptr : reduce2_ptrs)
{
auto argument2_ptr = reduce2_ptr->MakeArgumentPointer(
inLengths2,
InElementwiseOperation_2 in_elementwise_op_2(
static_cast<int32_t>(reduce_total_length));
AccElementwiseOperation_2 acc_elementwise_op_2(
static_cast<int32_t>(reduce_total_length));
auto argument2_ptr =
reduce2_ptr->MakeArgumentPointer(inLengths2,
inStrides2,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
ws_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
InElementwiseOperation_2{static_cast<int32_t>(reduce_total_length)},
AccElementwiseOperation_2{static_cast<int32_t>(reduce_total_length)});
in_elementwise_op_2,
acc_elementwise_op_2);
if(!reduce2_ptr->IsSupportedArgument(argument2_ptr.get()))
continue;
......@@ -531,12 +580,13 @@ void profile_reduce_impl_impl(bool do_verification,
if(do_verification)
{
out_dev.FromDevice(out.mData.data());
check_error(out_ref, out);
ck::utils::check_err(out.mData, out_ref.mData);
if(NeedIndices)
{
out_indices_dev.FromDevice(out_indices.mData.data());
check_indices(out_indices_ref, out_indices);
ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
;
};
if(do_log)
......@@ -584,10 +634,10 @@ void profile_reduce_impl(bool do_verification,
bool do_dumpout,
int nrepeat,
const std::vector<size_t>& inLengths,
const std::vector<int>& ReduceDims,
ReduceTensorOp_t ReduceOpId,
NanPropagation_t NanOpt,
ReduceTensorIndices_t IndicesOpt,
const std::vector<int>& reduceDims,
ReduceTensorOp ReduceOpId,
NanPropagation NanOpt,
ReduceTensorIndices IndicesOpt,
float alpha,
float beta)
{
......@@ -605,18 +655,26 @@ void profile_reduce_impl(bool do_verification,
using descType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;
if(!description_match(
descType{}, inLengths.size(), ReduceDims, ReduceOpId, NanOpt, IndicesOpt))
descType{}, inLengths.size(), reduceDims, ReduceOpId, NanOpt, IndicesOpt))
return;
profile_reduce_impl_impl<InDataType,
AccDataType,
OutDataType,
descType::Rank_,
typename descType::ReduceDims_,
static_cast<ReduceTensorOp_t>(descType::ReduceOpId_),
static_cast<NanPropagation_t>(descType::NanOpt_),
static_cast<ReduceTensorIndices_t>(descType::IndicesOpt_)>(
do_verification, init_method, do_log, do_dumpout, nrepeat, inLengths, alpha, beta);
descType::NumReduceDim_,
static_cast<ReduceTensorOp>(descType::ReduceOpId_),
static_cast<NanPropagation>(descType::NanOpt_),
static_cast<ReduceTensorIndices>(descType::IndicesOpt_)>(
do_verification,
init_method,
do_log,
do_dumpout,
nrepeat,
inLengths,
reduceDims,
alpha,
beta);
matched = true;
});
......
#include <cstdint>
#include <iostream>
#include <numeric>
#include <initializer_list>
......@@ -15,7 +16,7 @@
#include "device_batched_gemm_xdl.hpp"
#include "profile_batched_gemm_impl.hpp"
enum GemmMatrixLayout
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
......@@ -27,10 +28,12 @@ enum GemmMatrixLayout
KM_NK_NM, // 7
};
enum GemmDataType
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
int profile_batched_gemm(int argc, char* argv[])
......@@ -38,7 +41,7 @@ int profile_batched_gemm(int argc, char* argv[])
if(!(argc == 15))
{
printf("arg1: tensor operation (batched_gemm: Batched GEMM)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n");
printf("arg3: matrix layout (0: A[g, m, k] * B[g, k, n] = C[g, m, n];\n");
printf(" 1: A[g, m, k] * B[g, n, k] = C[g, m, n];\n");
printf(" 2: A[g, k, m] * B[g, k, n] = C[g, m, n];\n");
......@@ -51,8 +54,8 @@ int profile_batched_gemm(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
......@@ -146,6 +149,241 @@ int profile_batched_gemm(int argc, char* argv[])
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_batched_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_batched_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_batched_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_batched_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_batched_gemm_impl<float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_batched_gemm_impl<float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_batched_gemm_impl<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_batched_gemm_impl<float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_batched_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_batched_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_batched_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_batched_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_batched_gemm_reduce_impl.hpp"
int profile_batched_gemm_reduce(int argc, char* argv[])
{
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
};
enum struct GemmReduceDataType
{
F32_F32_F32_F32_F32, // 0
F16_F16_F16_F32_F32, // 1
};
if(!(argc == 15 || argc == 16))
{
printf("arg1: tensor operation (batched_gemm: BatchedGEMM+Reduce)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg7: run kernel # of times (>1)\n");
printf("arg8 to 14: M, N, K, StrideA, StrideB, StrideC, BatchCount\n");
printf("arg15: split k into mulitiple batch\n");
exit(1);
}
const auto data_type = static_cast<GemmReduceDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const int nrepeat = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
const int BatchCount = std::stoi(argv[14]);
if(data_type == GemmReduceDataType::F16_F16_F16_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_batched_gemm_reduce_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmReduceDataType::F16_F16_F16_F32_F32 &&
layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_batched_gemm_reduce_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmReduceDataType::F16_F16_F16_F32_F32 &&
layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_batched_gemm_reduce_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else if(data_type == GemmReduceDataType::F16_F16_F16_F32_F32 &&
layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_batched_gemm_reduce_impl<ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
BatchCount);
}
else
{
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
}
......@@ -6,7 +6,7 @@
#include <half.hpp>
#include "profile_conv_bwd_data_impl.hpp"
enum ConvDataType
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
......@@ -14,19 +14,19 @@ enum ConvDataType
INT8_INT8_INT8, // 3
};
enum ConvInputLayout
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
......@@ -50,10 +50,10 @@ int profile_conv_bwd_data(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
......@@ -89,6 +89,7 @@ int profile_conv_bwd_data(int argc, char* argv[])
float,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
......@@ -114,6 +115,7 @@ int profile_conv_bwd_data(int argc, char* argv[])
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
......@@ -139,6 +141,7 @@ int profile_conv_bwd_data(int argc, char* argv[])
uint16_t,
uint16_t,
uint16_t,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
......@@ -164,6 +167,7 @@ int profile_conv_bwd_data(int argc, char* argv[])
int8_t,
int8_t,
int8_t,
int32_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
......
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_conv_bwd_weight_impl.hpp"
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
int profile_conv_bwd_weight(int argc, char* argv[])
{
if(argc != 26)
{
printf("arg1: tensor operation (conv_fwd: ForwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: run kernel # of times (>1)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
printf("arg25: split k (>=1)\n");
exit(1);
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const int nrepeat = std::stoi(argv[9]);
const ck::index_t N = std::stoi(argv[10]);
const ck::index_t K = std::stoi(argv[11]);
const ck::index_t C = std::stoi(argv[12]);
const ck::index_t Y = std::stoi(argv[13]);
const ck::index_t X = std::stoi(argv[14]);
const ck::index_t Hi = std::stoi(argv[15]);
const ck::index_t Wi = std::stoi(argv[16]);
const ck::index_t conv_stride_h = std::stoi(argv[17]);
const ck::index_t conv_stride_w = std::stoi(argv[18]);
const ck::index_t conv_dilation_h = std::stoi(argv[19]);
const ck::index_t conv_dilation_w = std::stoi(argv[20]);
const ck::index_t in_left_pad_h = std::stoi(argv[21]);
const ck::index_t in_left_pad_w = std::stoi(argv[22]);
const ck::index_t in_right_pad_h = std::stoi(argv[23]);
const ck::index_t in_right_pad_w = std::stoi(argv[24]);
ck::index_t split_k = std::stoi(argv[25]);
split_k = std::max(1, split_k);
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv_bwd_weight_impl<2,
float,
float,
float,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w},
split_k);
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
ck::profiler::profile_conv_bwd_weight_impl<2,
ck::half_t,
ck::half_t,
ck::half_t,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
N,
K,
C,
std::vector<ck::index_t>{Hi, Wi},
std::vector<ck::index_t>{Y, X},
std::vector<ck::index_t>{Ho, Wo},
std::vector<ck::index_t>{conv_stride_h, conv_stride_w},
std::vector<ck::index_t>{conv_dilation_h, conv_dilation_w},
std::vector<ck::index_t>{in_left_pad_h, in_left_pad_w},
std::vector<ck::index_t>{in_right_pad_h, in_right_pad_w},
split_k);
}
else
{
throw std::runtime_error("wrong! this Conv data_type & layout is not implemented");
}
return 1;
}
......@@ -6,7 +6,7 @@
#include <half.hpp>
#include "profile_conv_fwd_impl.hpp"
enum ConvDataType
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
......@@ -14,19 +14,19 @@ enum ConvDataType
INT8_INT8_INT8, // 3
};
enum ConvInputLayout
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
......@@ -50,10 +50,10 @@ int profile_conv_fwd(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
......
......@@ -6,25 +6,25 @@
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_impl.hpp"
enum ConvDataType
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
enum ConvInputLayout
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
......@@ -48,10 +48,10 @@ int profile_conv_fwd_bias_relu(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
......
......@@ -6,25 +6,25 @@
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_add_impl.hpp"
enum ConvDataType
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
enum ConvInputLayout
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
......@@ -49,10 +49,10 @@ int profile_conv_fwd_bias_relu_add(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
......
......@@ -6,25 +6,25 @@
#include <half.hpp>
#include "profile_conv_fwd_bias_relu_atomic_add_impl.hpp"
enum ConvDataType
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
enum ConvInputLayout
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum ConvWeightLayout
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum ConvOutputLayout
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
......@@ -49,10 +49,10 @@ int profile_conv_fwd_bias_relu_atomic_add(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const int in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const int wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const int out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
......
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_convnd_bwd_data_impl.hpp"
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
INT8_INT8_INT8, // 3
};
enum struct ConvInputLayout
{
NCHW, // 0
NHWC, // 1
};
enum struct ConvWeightLayout
{
KCYX, // 0
KYXC, // 1
};
enum struct ConvOutputLayout
{
NKHW, // 0
NHWK, // 1
};
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[], int arg_idx)
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck::utils::conv::ConvParams params;
params.num_dim_spatial = num_dim_spatial;
params.N = std::stoi(argv[arg_idx++]);
params.K = std::stoi(argv[arg_idx++]);
params.C = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
int profile_convnd_bwd_data(int argc, char* argv[], int num_dim_spatial)
{
const int preParams = 10;
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + preParams;
if(cmdline_nargs != argc)
{
printf("arg1: tensor operation (conv[1|2|3]d_bwd_data: BackwardConvolution)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
printf("arg6: verification (0: no; 1: yes)\n");
printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg9: run kernel # of times (>1)\n");
printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
return 1;
}
const auto data_type = static_cast<ConvDataType>(std::stoi(argv[2]));
const auto in_layout = static_cast<ConvInputLayout>(std::stoi(argv[3]));
const auto wei_layout = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
const auto out_layout = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
const bool do_verification = std::stoi(argv[6]);
const int init_method = std::stoi(argv[7]);
const bool do_log = std::stoi(argv[8]);
const int nrepeat = std::stoi(argv[9]);
ck::utils::conv::ConvParams params = parse_conv_params(num_dim_spatial, argv, preParams);
auto Run = [&](auto input_type, auto wei_type, auto out_type, auto acc_type) {
using InDataType = decltype(input_type);
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using AccDataType = decltype(acc_type);
switch(num_dim_spatial)
{
case 1:
ck::profiler::profile_convnd_bwd_data_impl<1,
InDataType,
WeiDataType,
OutDataType,
AccDataType,
ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::NWK>(
do_verification,
init_method,
do_log,
nrepeat,
params.N,
params.K,
params.C,
params.input_spatial_lengths,
params.filter_spatial_lengths,
params.GetOutputSpatialLengths(),
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads);
break;
case 2:
ck::profiler::profile_convnd_bwd_data_impl<2,
InDataType,
WeiDataType,
OutDataType,
AccDataType,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK>(
do_verification,
init_method,
do_log,
nrepeat,
params.N,
params.K,
params.C,
params.input_spatial_lengths,
params.filter_spatial_lengths,
params.GetOutputSpatialLengths(),
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads);
break;
case 3:
ck::profiler::profile_convnd_bwd_data_impl<3,
InDataType,
WeiDataType,
OutDataType,
AccDataType,
ck::tensor_layout::convolution::NDHWC,
ck::tensor_layout::convolution::KZYXC,
ck::tensor_layout::convolution::NDHWK>(
do_verification,
init_method,
do_log,
nrepeat,
params.N,
params.K,
params.C,
params.input_spatial_lengths,
params.filter_spatial_lengths,
params.GetOutputSpatialLengths(),
params.conv_filter_strides,
params.conv_filter_dilations,
params.input_left_pads,
params.input_right_pads);
break;
default: break;
}
};
if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(float{}, float{}, float{}, float{});
}
else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::half_t{}, ck::half_t{}, ck::half_t{}, float{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(ck::bhalf_t{}, ck::bhalf_t{}, ck::bhalf_t{}, float{});
}
else if(data_type == ConvDataType::INT8_INT8_INT8 && in_layout == ConvInputLayout::NHWC &&
wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
{
Run(int8_t{}, int8_t{}, int8_t{}, int32_t{});
}
else
{
std::cout << "wrong! this Conv data_type & layout is not implemented" << std::endl;
return 1;
}
return 0;
}
......@@ -6,7 +6,7 @@
#include <half.hpp>
#include "profile_gemm_impl.hpp"
enum GemmMatrixLayout
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
......@@ -18,7 +18,7 @@ enum GemmMatrixLayout
KM_NK_NM, // 7
};
enum GemmDataType
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
......@@ -45,8 +45,8 @@ int profile_gemm(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
......@@ -223,6 +223,26 @@ int profile_gemm(int argc, char* argv[])
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_impl<int8_t,
......@@ -243,6 +263,66 @@ int profile_gemm(int argc, char* argv[])
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm_impl<int8_t,
int8_t,
int8_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_impl<ck::bhalf_t,
......@@ -263,6 +343,46 @@ int profile_gemm(int argc, char* argv[])
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else if(data_type == GemmDataType::BF16_BF16_BF16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm_impl<ck::bhalf_t,
ck::bhalf_t,
ck::bhalf_t,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? M : StrideA,
(StrideB < 0) ? K : StrideB,
(StrideC < 0) ? N : StrideC,
KBatch);
}
else
{
throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
......
......@@ -6,7 +6,7 @@
#include <half.hpp>
#include "profile_gemm_bias_2d_impl.hpp"
enum GemmMatrixLayout
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
......@@ -18,7 +18,7 @@ enum GemmMatrixLayout
KM_NK_NM, // 7
};
enum GemmDataType
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
......@@ -45,8 +45,8 @@ int profile_gemm_bias_2d(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
......
......@@ -6,7 +6,7 @@
#include <half.hpp>
#include "profile_gemm_bias_relu_impl.hpp"
enum GemmMatrixLayout
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
......@@ -18,7 +18,7 @@ enum GemmMatrixLayout
KM_NK_NM, // 7
};
enum GemmDataType
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
......@@ -43,8 +43,8 @@ int profile_gemm_bias_relu(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
......
......@@ -6,7 +6,7 @@
#include <half.hpp>
#include "profile_gemm_bias_relu_add_impl.hpp"
enum GemmMatrixLayout
enum struct GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
......@@ -18,7 +18,7 @@ enum GemmMatrixLayout
KM_NK_NM, // 7
};
enum GemmDataType
enum struct GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
......@@ -43,8 +43,8 @@ int profile_gemm_bias_relu_add(int argc, char* argv[])
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const auto data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment