Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
dcdbed2a
Commit
dcdbed2a
authored
Apr 23, 2022
by
qinletao
Browse files
add conv fwd example
parent
d443a7a6
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
356 additions
and
10 deletions
+356
-10
example/01_gemm/gemm_xdl_fp64.cpp
example/01_gemm/gemm_xdl_fp64.cpp
+9
-10
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+1
-0
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
+346
-0
No files found.
example/01_gemm/gemm_xdl_fp64.cpp
View file @
dcdbed2a
...
@@ -30,7 +30,6 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
...
@@ -30,7 +30,6 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
...
@@ -48,7 +47,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
...
@@ -48,7 +47,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if 1
#if 1
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
2
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
7
,
1
>
;
<
F64
,
F64
,
F64
,
F64
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
128
,
4
,
4
,
16
,
16
,
4
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
true
,
7
,
1
>
;
using
ADataType
=
double
;
using
ADataType
=
double
;
using
BDataType
=
double
;
using
BDataType
=
double
;
using
CDataType
=
double
;
using
CDataType
=
double
;
...
@@ -144,10 +143,10 @@ int main(int argc, char* argv[])
...
@@ -144,10 +143,10 @@ int main(int argc, char* argv[])
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
break
;
default:
default:
//a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
//
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_
3
<
BDataType
>
{
-
0.
5
,
0.
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_
2
<
BDataType
>
{
-
5
,
5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
//b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
//
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
}
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
...
@@ -209,12 +208,12 @@ int main(int argc, char* argv[])
...
@@ -209,12 +208,12 @@ int main(int argc, char* argv[])
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
#if
1
#if
0
{
{
LogRangeAsType
<
doubl
e
>
(
std
::
cout
<<
"a : "
,
a_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType<
AccDataTyp
e>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType
<
doubl
e
>
(
std
::
cout
<<
"b: "
,
b_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType<
AccDataTyp
e>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType
<
doubl
e
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType<
AccDataTyp
e>(std::cout << "c_device: ", c_m_n_device_result.mData, ",") << std::endl;
LogRangeAsType
<
doubl
e
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_result
.
mData
,
","
)
LogRangeAsType<
AccDataTyp
e>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
<< std::endl;
}
}
#endif
#endif
...
...
example/09_convnd_fwd/CMakeLists.txt
View file @
dcdbed2a
add_example_executable
(
example_convnd_fwd_xdl convnd_fwd_xdl.cpp
)
add_example_executable
(
example_convnd_fwd_xdl convnd_fwd_xdl.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
0 → 100644
View file @
dcdbed2a
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "check_err.hpp"
#include "config.hpp"
#include "conv_fwd_util.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"
namespace
{
using
InDataType
=
double
;
using
WeiDataType
=
double
;
using
OutDataType
=
double
;
using
AccDataType
=
double
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
using
DeviceConvFwdBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
// clang-format off
InDataType
,
//
WeiDataType
,
//
OutDataType
,
//
AccDataType
,
//
InElementOp
,
// Input Elementwise Operation
WeiElementOp
,
// Weights Elementwise Operation
OutElementOp
,
// Output Elementwise Operation
ConvFwdDefault
,
// ConvForwardSpecialization
NumDimSpatial
,
// NumDimSpatial
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
2
,
// K1
16
,
// MPerXDL
16
,
// NPerXDL
4
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
2
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
2
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockTransferAddExtraN
7
,
// CThreadTransferSrcDstVectorDim
1
>
;
// CThreadTransferDstScalarPerVector
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumDimSpatial
>
;
DeviceConvFwdBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
argc
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
5
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
0
);
}
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
5
;
params
.
num_dim_spatial
=
num_dim_spatial
;
params
.
N
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
}
// anonymous namespace
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
::
utils
::
conv
;
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
if
(
argc
>=
5
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
}
if
(
argc
>=
6
)
{
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N
),
static_cast
<
std
::
size_t
>
(
params
.
C
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths
),
std
::
end
(
params
.
input_spatial_lengths
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K
),
static_cast
<
std
::
size_t
>
(
params
.
C
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths
),
std
::
end
(
params
.
filter_spatial_lengths
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N
),
static_cast
<
std
::
size_t
>
(
params
.
K
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
input
(
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
weights
(
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
host_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
device_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
weights
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
case
2
:
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
weights
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
// input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
weights
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
input
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
// weights.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
mData
.
data
());
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N
,
params
.
K
,
params
.
C
,
params
.
input_spatial_lengths
,
params
.
filter_spatial_lengths
,
output_spatial_lengths
,
params
.
conv_filter_strides
,
params
.
conv_filter_dilations
,
params
.
input_left_pads
,
params
.
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
nrepeat
);
std
::
size_t
flop
=
get_flops
(
params
.
N
,
params
.
C
,
params
.
K
,
params
.
filter_spatial_lengths
,
output_spatial_lengths
);
std
::
size_t
num_btype
=
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N
,
params
.
C
,
params
.
K
,
params
.
input_spatial_lengths
,
params
.
filter_spatial_lengths
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
verify_f
=
[
&
input
,
&
weights
,
&
host_output
,
&
params
,
&
out_device_buf
,
&
device_output
](
const
auto
&
ref_conv
)
{
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
weights
,
host_output
,
params
.
conv_filter_strides
,
params
.
conv_filter_dilations
,
params
.
input_left_pads
,
params
.
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
ck
::
utils
::
check_err
(
host_output
.
mData
,
device_output
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
}
case
2
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
verify_f
(
ref_conv
);
break
;
}
case
1
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
1
>
();
verify_f
(
ref_conv
);
break
;
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment