Commit da21d4a9 authored by Chao Liu's avatar Chao Liu
Browse files

add gemm kernel: mk_kn_mn and km_kn_mn

parent fbc58d9b
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename ABType,
typename AccType,
typename CType,
typename ADesc,
typename BDesc,
typename CDesc>
void device_gemm_xdlops_km_kn_mn(const ADesc& a_k_m_grid_desc,
const BDesc& b_k_n_grid_desc,
const CDesc& c_m_n_grid_desc,
const Tensor<ABType>& a_k_m,
const Tensor<ABType>& b_k_n,
Tensor<CType>& c_m_n,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
DeviceMem a_k_m_device_buf(sizeof(ABType) * a_k_m.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(ABType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CType) * c_m_n.mDesc.GetElementSpace());
a_k_m_device_buf.ToDevice(a_k_m.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c_m_n_device_buf.ToDevice(c_m_n.mData.data());
#if 1
// [M, N, K0, K1] = [256, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_M = 4;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 2;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#endif
const auto K = a_k_m_grid_desc.GetLength(I0);
const auto M = a_k_m_grid_desc.GetLength(I1);
const auto N = b_k_n_grid_desc.GetLength(I1);
constexpr auto K1Number = Number<K1>{};
const auto K0 = K / K1Number;
const auto a_k0_m_k1_grid_desc =
transform_tensor_descriptor(a_k_m_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto b_k0_n_k1_grid_desc =
transform_tensor_descriptor(b_k_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops_v2r3<BlockSize,
ABType,
AccType,
CType,
InMemoryDataOperationEnum_t::Set,
decltype(a_k0_m_k1_grid_desc),
decltype(b_k0_n_k1_grid_desc),
decltype(c_m_n_grid_desc),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
ABlockTransferSrcScalarPerVector_M,
ABlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
BBlockTransferSrcScalarPerVector_N,
BBlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
7,
CThreadTransferDstScalarPerVector,
decltype(a_k0_m_k1_grid_step_hacks),
decltype(b_k0_n_k1_grid_step_hacks),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks),
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks),
false // CAccessOrderMRepeatNRepeat
>(static_cast<ABType*>(a_k_m_device_buf.GetDeviceBuffer()),
static_cast<ABType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CType*>(c_m_n_device_buf.GetDeviceBuffer()),
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m_n_grid_desc,
a_k0_m_k1_grid_step_hacks,
b_k0_n_k1_grid_step_hacks,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
a_k0_m_k1_grid_move_slice_window_step_hacks,
b_k0_n_k1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>((std::size_t(2) * M * N * K)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
}
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename ABType,
typename AccType,
typename CType,
typename ADesc,
typename BDesc,
typename CDesc>
void device_gemm_xdlops_mk_kn_mn(const ADesc& a_m_k_grid_desc,
const BDesc& b_k_n_grid_desc,
const CDesc& c_m_n_grid_desc,
const Tensor<ABType>& a_m_k,
const Tensor<ABType>& b_k_n,
Tensor<CType>& c_m_n,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
DeviceMem a_m_k_device_buf(sizeof(ABType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(ABType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CType) * c_m_n.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c_m_n_device_buf.ToDevice(c_m_n.mData.data());
#if 1
// [M, N, K0, K1] = [256, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 2;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 256, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 128;
constexpr index_t NPerBlock = 256;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 2, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 4, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 4;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#endif
const auto K = a_m_k_grid_desc.GetLength(I1);
const auto M = a_m_k_grid_desc.GetLength(I0);
const auto N = b_k_n_grid_desc.GetLength(I1);
constexpr auto K1Number = Number<K1>{};
const auto K0 = K / K1Number;
const auto a_k0_m_k1_grid_desc =
transform_tensor_descriptor(a_m_k_grid_desc,
make_tuple(make_pass_through_transform(M),
make_unmerge_transform(make_tuple(K0, K1Number))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
const auto b_k0_n_k1_grid_desc =
transform_tensor_descriptor(b_k_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops_v2r3<BlockSize,
ABType,
AccType,
CType,
InMemoryDataOperationEnum_t::Set,
decltype(a_k0_m_k1_grid_desc),
decltype(b_k0_n_k1_grid_desc),
decltype(c_m_n_grid_desc),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
ABlockTransferSrcScalarPerVector_K1,
ABlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
BBlockTransferSrcScalarPerVector_N,
BBlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
7,
CThreadTransferDstScalarPerVector,
decltype(a_k0_m_k1_grid_step_hacks),
decltype(b_k0_n_k1_grid_step_hacks),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks),
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks),
false // CAccessOrderMRepeatNRepeat
>(static_cast<ABType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<ABType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CType*>(c_m_n_device_buf.GetDeviceBuffer()),
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m_n_grid_desc,
a_k0_m_k1_grid_step_hacks,
b_k0_n_k1_grid_step_hacks,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
a_k0_m_k1_grid_move_slice_window_step_hacks,
b_k0_n_k1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>((std::size_t(2) * M * N * K)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
}
#pragma once
#include <unistd.h> #include <unistd.h>
#include "device.hpp" #include "device.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
......
...@@ -12,14 +12,20 @@ ...@@ -12,14 +12,20 @@
#include "gemm_common.hpp" #include "gemm_common.hpp"
#include "host_gemm.hpp" #include "host_gemm.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "device_gemm_xdlops_mk_kn_mn.hpp"
#include "device_gemm_xdlops_mk_nk_mn.hpp" #include "device_gemm_xdlops_mk_nk_mn.hpp"
#include "device_gemm_xdlops_km_kn_mn.hpp"
#define USE_GEMM_XDL_MK_NK_MN 1 #define USE_GEMM_XDL_MK_KN_MN 0
#define USE_GEMM_XDL_MK_NK_MN 0
#define USE_GEMM_XDL_KM_KN_MN 1
enum GemmAlgo enum GemmAlgo
{ {
Xdl_MK_KN_MN, // 0 Xdl_MK_KN_MN, // 0
Xdl_MK_NK_MN, // 1 Xdl_MK_NK_MN, // 1
Xdl_KM_KN_MN, // 2
Xdl_KM_NK_MN, // 3
}; };
int main(int argc, char* argv[]) int main(int argc, char* argv[])
...@@ -66,11 +72,11 @@ int main(int argc, char* argv[]) ...@@ -66,11 +72,11 @@ int main(int argc, char* argv[])
std::vector<std::size_t> a_lengths_host(2), b_lengths_host(2), c_lengths_host(2); std::vector<std::size_t> a_lengths_host(2), b_lengths_host(2), c_lengths_host(2);
std::vector<std::size_t> a_strides_host(2), b_strides_host(2), c_strides_host(2); std::vector<std::size_t> a_strides_host(2), b_strides_host(2), c_strides_host(2);
if(layout == GemmMatrixLayout::KM_KN_MN) if(layout == GemmMatrixLayout::MK_KN_MN)
{ {
a_lengths_host[0] = static_cast<std::size_t>(K); a_lengths_host[0] = static_cast<std::size_t>(M);
a_lengths_host[1] = static_cast<std::size_t>(M); a_lengths_host[1] = static_cast<std::size_t>(K);
a_strides_host[0] = static_cast<std::size_t>(M); a_strides_host[0] = static_cast<std::size_t>(K);
a_strides_host[1] = static_cast<std::size_t>(1); a_strides_host[1] = static_cast<std::size_t>(1);
b_lengths_host[0] = static_cast<std::size_t>(K); b_lengths_host[0] = static_cast<std::size_t>(K);
...@@ -100,6 +106,23 @@ int main(int argc, char* argv[]) ...@@ -100,6 +106,23 @@ int main(int argc, char* argv[])
c_strides_host[0] = static_cast<std::size_t>(N); c_strides_host[0] = static_cast<std::size_t>(N);
c_strides_host[1] = static_cast<std::size_t>(1); c_strides_host[1] = static_cast<std::size_t>(1);
} }
else if(layout == GemmMatrixLayout::KM_KN_MN)
{
a_lengths_host[0] = static_cast<std::size_t>(K);
a_lengths_host[1] = static_cast<std::size_t>(M);
a_strides_host[0] = static_cast<std::size_t>(M);
a_strides_host[1] = static_cast<std::size_t>(1);
b_lengths_host[0] = static_cast<std::size_t>(K);
b_lengths_host[1] = static_cast<std::size_t>(N);
b_strides_host[0] = static_cast<std::size_t>(N);
b_strides_host[1] = static_cast<std::size_t>(1);
c_lengths_host[0] = static_cast<std::size_t>(M);
c_lengths_host[1] = static_cast<std::size_t>(N);
c_strides_host[0] = static_cast<std::size_t>(N);
c_strides_host[1] = static_cast<std::size_t>(1);
}
else else
{ {
std::runtime_error("wrong! not implemented"); std::runtime_error("wrong! not implemented");
...@@ -143,6 +166,14 @@ int main(int argc, char* argv[]) ...@@ -143,6 +166,14 @@ int main(int argc, char* argv[])
b.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread); b.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
} }
auto f_make_for_device_mk_kn_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(N, I1));
const auto c_desc = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return make_tuple(a_desc, b_desc, c_desc);
};
auto f_make_for_device_mk_nk_mn = [&]() { auto f_make_for_device_mk_nk_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1)); const auto a_desc = make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(K, I1)); const auto b_desc = make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(K, I1));
...@@ -151,6 +182,29 @@ int main(int argc, char* argv[]) ...@@ -151,6 +182,29 @@ int main(int argc, char* argv[])
return make_tuple(a_desc, b_desc, c_desc); return make_tuple(a_desc, b_desc, c_desc);
}; };
auto f_make_for_device_km_kn_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(K, M), make_tuple(M, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(N, I1));
const auto c_desc = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return make_tuple(a_desc, b_desc, c_desc);
};
#if USE_GEMM_XDL_MK_KN_MN
if(algo == GemmAlgo::Xdl_MK_KN_MN)
{
if(layout != GemmMatrixLayout::MK_KN_MN)
{
throw std::runtime_error("wrong! layout");
}
const auto descs = f_make_for_device_mk_kn_mn();
device_gemm_xdlops_mk_kn_mn<ab_data_t, acc_data_t, c_data_t>(
descs[I0], descs[I1], descs[I2], a, b, c_device, nrepeat);
}
#endif
#if USE_GEMM_XDL_MK_NK_MN #if USE_GEMM_XDL_MK_NK_MN
if(algo == GemmAlgo::Xdl_MK_NK_MN) if(algo == GemmAlgo::Xdl_MK_NK_MN)
{ {
...@@ -166,6 +220,21 @@ int main(int argc, char* argv[]) ...@@ -166,6 +220,21 @@ int main(int argc, char* argv[])
} }
#endif #endif
#if USE_GEMM_XDL_KM_KN_MN
if(algo == GemmAlgo::Xdl_KM_KN_MN)
{
if(layout != GemmMatrixLayout::KM_KN_MN)
{
throw std::runtime_error("wrong! layout");
}
const auto descs = f_make_for_device_km_kn_mn();
device_gemm_xdlops_km_kn_mn<ab_data_t, acc_data_t, c_data_t>(
descs[I0], descs[I1], descs[I2], a, b, c_device, nrepeat);
}
#endif
if(do_verification) if(do_verification)
{ {
host_gemm(a, b, c_host, layout); host_gemm(a, b, c_host, layout);
......
...@@ -4,9 +4,9 @@ ...@@ -4,9 +4,9 @@
enum GemmMatrixLayout enum GemmMatrixLayout
{ {
MK_KN_MN, // 0 MK_KN_MN, // 0
KM_KN_MN, // 1 MK_NK_MN, // 1
KM_NK_MN, // 2 KM_KN_MN, // 2
MK_NK_MN, // 3 KM_NK_MN, // 3
}; };
#endif #endif
...@@ -8,24 +8,60 @@ void host_gemm(const Tensor<AType>& a, ...@@ -8,24 +8,60 @@ void host_gemm(const Tensor<AType>& a,
Tensor<CType>& c, Tensor<CType>& c,
const GemmMatrixLayout layout) const GemmMatrixLayout layout)
{ {
auto f_mk_nk_mn = [&](auto m, auto n) { if(layout == GemmMatrixLayout::MK_KN_MN)
const int K = a.mDesc.GetLengths()[1]; {
auto f_mk_kn_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[1];
double v = 0; double v = 0;
for(int k = 0; k < K; ++k) for(int k = 0; k < K; ++k)
{ {
v += static_cast<const double>(a(m, k)) * static_cast<const double>(b(n, k)); v += static_cast<const double>(a(m, k)) * static_cast<const double>(b(k, n));
} }
c(m, n) = v; c(m, n) = v;
}; };
if(layout == GemmMatrixLayout::MK_NK_MN) make_ParallelTensorFunctor(f_mk_kn_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
}
else if(layout == GemmMatrixLayout::MK_NK_MN)
{ {
auto f_mk_nk_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[1];
double v = 0;
for(int k = 0; k < K; ++k)
{
v += static_cast<const double>(a(m, k)) * static_cast<const double>(b(n, k));
}
c(m, n) = v;
};
make_ParallelTensorFunctor(f_mk_nk_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])( make_ParallelTensorFunctor(f_mk_nk_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency()); std::thread::hardware_concurrency());
} }
else if(layout == GemmMatrixLayout::KM_KN_MN)
{
auto f_km_kn_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[0];
double v = 0;
for(int k = 0; k < K; ++k)
{
v += static_cast<const double>(a(k, m)) * static_cast<const double>(b(k, n));
}
c(m, n) = v;
};
make_ParallelTensorFunctor(f_km_kn_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
}
else else
{ {
throw std::runtime_error("wrong! not supported layout"); throw std::runtime_error("wrong! not supported layout");
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment