Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d3cd6f41
Unverified
Commit
d3cd6f41
authored
Nov 07, 2023
by
Rostyslav Geyyer
Committed by
GitHub
Nov 07, 2023
Browse files
Merge branch 'develop' into lwpck-987
parents
e84c2a33
98fd41f5
Changes
143
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1349 additions
and
799 deletions
+1349
-799
Jenkinsfile
Jenkinsfile
+32
-16
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
..._grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
+11
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
...scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
+212
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
+18
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
+18
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
+18
-0
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
...add_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
+18
-0
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/26_contraction/CMakeLists.txt
example/26_contraction/CMakeLists.txt
+48
-0
example/26_contraction/common_instances.hpp
example/26_contraction/common_instances.hpp
+196
-0
example/26_contraction/contraction_bilinear_xdl_bf16_compute_fp32.cpp
...ontraction/contraction_bilinear_xdl_bf16_compute_fp32.cpp
+86
-0
example/26_contraction/contraction_bilinear_xdl_fp16_compute_fp32.cpp
...ontraction/contraction_bilinear_xdl_fp16_compute_fp32.cpp
+86
-0
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
+59
-266
example/26_contraction/contraction_bilinear_xdl_fp32_compute_bf16.cpp
...ontraction/contraction_bilinear_xdl_fp32_compute_bf16.cpp
+86
-0
example/26_contraction/contraction_bilinear_xdl_fp32_compute_fp16.cpp
...ontraction/contraction_bilinear_xdl_fp32_compute_fp16.cpp
+86
-0
example/26_contraction/contraction_bilinear_xdl_fp64.cpp
example/26_contraction/contraction_bilinear_xdl_fp64.cpp
+59
-266
example/26_contraction/contraction_bilinear_xdl_fp64_compute_fp32.cpp
...ontraction/contraction_bilinear_xdl_fp64_compute_fp32.cpp
+86
-0
example/26_contraction/contraction_scale_xdl_bf16_compute_fp32.cpp
...6_contraction/contraction_scale_xdl_bf16_compute_fp32.cpp
+85
-0
example/26_contraction/contraction_scale_xdl_fp16_compute_fp32.cpp
...6_contraction/contraction_scale_xdl_fp16_compute_fp32.cpp
+85
-0
example/26_contraction/contraction_scale_xdl_fp32.cpp
example/26_contraction/contraction_scale_xdl_fp32.cpp
+59
-250
No files found.
Jenkinsfile
View file @
d3cd6f41
...
...
@@ -139,7 +139,7 @@ def buildDocker(install_prefix){
else
{
echo
"Checking for image: ${image_name}"
sh
"docker manifest inspect --insecure ${image_name}"
echo
"Image: ${image_name} found!
!
Skipping building image"
echo
"Image: ${image_name} found! Skipping building image"
}
}
catch
(
Exception
ex
){
...
...
@@ -213,8 +213,10 @@ def cmake_build(Map conf=[:]){
if
(
setup_args
.
contains
(
"gfx94"
)){
invocation_tag
=
"gfx94"
}
echo
"invocation tag: ${invocation_tag}"
def
redis_pre_setup_cmd
=
pre_setup_cmd
if
(
check_host
()
&&
params
.
USE_SCCACHE
&&
"${env.CK_SCCACHE}"
!=
"null"
&&
"${invocation_tag}"
!=
""
)
{
pre_setup_cmd
=
pre_setup_cmd
+
"""
redis_
pre_setup_cmd
=
pre_setup_cmd
+
"""
#!/bin/bash
export ROCM_PATH=/opt/rocm
export SCCACHE_ENABLED=true
...
...
@@ -228,18 +230,30 @@ def cmake_build(Map conf=[:]){
export SCCACHE_C_CUSTOM_CACHE_BUSTER="${invocation_tag}"
echo \$SCCACHE_C_CUSTOM_CACHE_BUSTER
stunnel ../script/redis-cli.conf
(
set -e
../script/sccache_wrapper.sh --enforce_redis
)
error_code=\$?
if [ \$error_code -ne 0 ]; then
echo "could not connect to the redis server. using sccache locally."
../script/sccache_wrapper.sh
fi
"""
try
{
def
cmd1
=
conf
.
get
(
"cmd1"
,
"""
${redis_pre_setup_cmd}
"""
)
sh
cmd1
setup_args
=
" -DCMAKE_CXX_COMPILER_LAUNCHER=sccache -DCMAKE_C_COMPILER_LAUNCHER=sccache "
+
setup_args
}
catch
(
Exception
err
){
echo
"could not connect to redis server: ${err.getMessage()}. will not use sccache."
def
cmd2
=
conf
.
get
(
"cmd2"
,
"""
${pre_setup_cmd}
"""
)
sh
cmd2
}
}
else
{
def
cmd3
=
conf
.
get
(
"cmd3"
,
"""
${pre_setup_cmd}
"""
)
sh
cmd3
}
def
setup_cmd
=
conf
.
get
(
"setup_cmd"
,
"${cmake_envs} cmake ${setup_args} .. "
)
// reduce parallelism when compiling, clang uses too much memory
def
nt
=
nthreads
()
...
...
@@ -247,14 +261,16 @@ def cmake_build(Map conf=[:]){
def
execute_cmd
=
conf
.
get
(
"execute_cmd"
,
""
)
def
cmd
=
conf
.
get
(
"cmd"
,
"""
${pre_setup_cmd}
${setup_cmd}
${build_cmd}
${execute_cmd}
"""
)
echo
cmd
dir
(
"build"
){
sh
cmd
}
// Only archive from master or develop
if
(
package_build
==
true
&&
(
env
.
BRANCH_NAME
==
"develop"
||
env
.
BRANCH_NAME
==
"amd-master"
))
{
...
...
@@ -686,8 +702,8 @@ pipeline {
description:
"Use the CK build to verify hipTensor build and tests (default: ON)"
)
string
(
name:
'hipTensor_branch'
,
defaultValue:
'
mainline
'
,
description:
'Specify which branch of hipTensor to use (default:
mainline
)'
)
defaultValue:
'
develop
'
,
description:
'Specify which branch of hipTensor to use (default:
develop
)'
)
booleanParam
(
name:
"USE_SCCACHE"
,
defaultValue:
true
,
...
...
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/CMakeLists.txt
0 → 100644
View file @
d3cd6f41
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_bf16 PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_scaleadd_scaleadd_relu_int8 PRIVATE composable_kernel::device_operations
)
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu.inc
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_scaleadd_relu.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAddScaleAddRelu
=
ck
::
tensor_operation
::
element_wise
::
ScaleAddScaleAddRelu
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
64
;
// batch size
static
constexpr
ck
::
index_t
K
=
64
;
// output channel
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Z
=
3
;
// filter D
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Di
=
14
;
// input D
static
constexpr
ck
::
index_t
Hi
=
14
;
// input H
static
constexpr
ck
::
index_t
Wi
=
14
;
// input W
static
constexpr
ck
::
index_t
Do
=
14
;
// output D
static
constexpr
ck
::
index_t
Ho
=
14
;
// output H
static
constexpr
ck
::
index_t
Wo
=
14
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
execute_conv_fwd_scaleadd_scaleadd_relu
()
{
// We have NHWGC/GKYXC/NHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
std
::
array
<
ck
::
index_t
,
6
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
6
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
6
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
6
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
6
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
6
>
out_strides
{
C
,
Do
*
Ho
*
Wo
*
G
*
C
,
1
,
Ho
*
Wo
*
G
*
C
,
Wo
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Di
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
d0
(
sizeof
(
std
::
tuple_element_t
<
0
,
DDataTypes
>
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
SimpleDeviceMem
d1
(
sizeof
(
std
::
tuple_element_t
<
1
,
DDataTypes
>
)
*
N
*
Do
*
Ho
*
Wo
*
G
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
,
OutLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
std
::
tuple_element_t
<
0
,
DDataTypes
>
,
std
::
tuple_element_t
<
1
,
DDataTypes
>>
,
OutDataType
,
PassThrough
,
PassThrough
,
ScaleAddScaleAddRelu
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
d0
.
GetDeviceBuffer
(),
d1
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
,
out_lengths
},
{
out_strides
,
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ScaleAddScaleAddRelu
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
+
2
*
N
*
Ho
*
Wo
*
G
*
K
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
(
sizeof
(
OutDataType
)
+
sizeof
(
std
::
tuple_element_t
<
0
,
DDataTypes
>
)
+
sizeof
(
std
::
tuple_element_t
<
1
,
DDataTypes
>
))
*
N
*
Ho
*
Wo
*
G
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
d0
.
GetDeviceBuffer
(),
d1
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{
out_lengths
,
out_lengths
},
{
out_strides
,
out_strides
},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ScaleAddScaleAddRelu
{
2.
f
,
2.
f
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_bf16.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp16.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
ck
::
half_t
,
ck
::
half_t
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
float
,
float
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
client_example/23_grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_int8.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include "ck/utility/data_type.hpp"
#include "ck/utility/tuple.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
OutDataType
=
int8_t
;
// Use std tuple instead of ck tuple to avoid clang
// implicit instantiation of undefined template error.
using
DDataTypes
=
std
::
tuple
<
float
,
float
>
;
#include "grouped_conv_fwd_scaleadd_scaleadd_relu.inc"
int
main
()
{
return
execute_conv_fwd_scaleadd_scaleadd_relu
();
}
docs/sphinx/requirements.txt
View file @
d3cd6f41
...
...
@@ -103,7 +103,7 @@ requests==2.28.2
# via
# pygithub
# sphinx
rocm-docs-core==0.2
4
.0
rocm-docs-core==0.2
6
.0
# via -r requirements.in
six==1.16.0
# via
...
...
example/26_contraction/CMakeLists.txt
View file @
d3cd6f41
add_custom_target
(
example_contraction
)
add_custom_target
(
example_contraction_scale
)
add_custom_target
(
example_contraction_bilinear
)
# FP32
add_example_executable
(
example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_fp32
)
add_example_executable
(
example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_fp32
)
add_example_executable
(
example_contraction_bilinear_xdl_fp32_compute_bf16 contraction_bilinear_xdl_fp32_compute_bf16.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_bf16
)
add_example_executable
(
example_contraction_scale_xdl_fp32_compute_bf16 contraction_scale_xdl_fp32_compute_bf16.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_fp32_compute_bf16
)
add_example_executable
(
example_contraction_bilinear_xdl_fp32_compute_fp16 contraction_bilinear_xdl_fp32_compute_fp16.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_fp32_compute_fp16
)
add_example_executable
(
example_contraction_scale_xdl_fp32_compute_fp16 contraction_scale_xdl_fp32_compute_fp16.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_fp32_compute_fp16
)
# FP64
add_example_executable
(
example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_fp64
)
add_example_executable
(
example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_fp64
)
add_example_executable
(
example_contraction_bilinear_xdl_fp64_compute_fp32 contraction_bilinear_xdl_fp64_compute_fp32.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_fp64_compute_fp32
)
add_example_executable
(
example_contraction_scale_xdl_fp64_compute_fp32 contraction_scale_xdl_fp64_compute_fp32.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_fp64_compute_fp32
)
# FP16
add_example_executable
(
example_contraction_bilinear_xdl_fp16_compute_fp32 contraction_bilinear_xdl_fp16_compute_fp32.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_fp16_compute_fp32
)
add_example_executable
(
example_contraction_scale_xdl_fp16_compute_fp32 contraction_scale_xdl_fp16_compute_fp32.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_fp16_compute_fp32
)
# BF16
add_example_executable
(
example_contraction_bilinear_xdl_bf16_compute_fp32 contraction_bilinear_xdl_bf16_compute_fp32.cpp
)
add_dependencies
(
example_contraction_bilinear example_contraction_bilinear_xdl_bf16_compute_fp32
)
add_example_executable
(
example_contraction_scale_xdl_bf16_compute_fp32 contraction_scale_xdl_bf16_compute_fp32.cpp
)
add_dependencies
(
example_contraction_scale example_contraction_scale_xdl_bf16_compute_fp32
)
add_dependencies
(
example_contraction example_contraction_scale
)
add_dependencies
(
example_contraction example_contraction_bilinear
)
example/26_contraction/common_instances.hpp
0 → 100644
View file @
d3cd6f41
This diff is collapsed.
Click to expand it.
example/26_contraction/contraction_bilinear_xdl_bf16_compute_fp32.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
BF16
;
using
ComputeDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
DeviceOpInstanceKKNN
=
DeviceOpInstanceKK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNNN
=
DeviceOpInstanceKN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKNN
=
DeviceOpInstanceMK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNNN
=
DeviceOpInstanceMN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
#include "run_contraction_bilinear_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_bilinear_example
(
argc
,
argv
);
}
example/26_contraction/contraction_bilinear_xdl_fp16_compute_fp32.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
using
ComputeDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
DeviceOpInstanceKKNN
=
DeviceOpInstanceKK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNNN
=
DeviceOpInstanceKN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKNN
=
DeviceOpInstanceMK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNNN
=
DeviceOpInstanceMN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
#include "run_contraction_bilinear_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_bilinear_example
(
argc
,
argv
);
}
example/26_contraction/contraction_bilinear_xdl_fp32.cpp
View file @
d3cd6f41
This diff is collapsed.
Click to expand it.
example/26_contraction/contraction_bilinear_xdl_fp32_compute_bf16.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
using
ComputeDataType
=
BF16
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
DeviceOpInstanceKKNN
=
DeviceOpInstanceKK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNNN
=
DeviceOpInstanceKN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKNN
=
DeviceOpInstanceMK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNNN
=
DeviceOpInstanceMN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
#include "run_contraction_bilinear_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_bilinear_example
(
argc
,
argv
);
}
example/26_contraction/contraction_bilinear_xdl_fp32_compute_fp16.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F32
;
using
ComputeDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
DeviceOpInstanceKKNN
=
DeviceOpInstanceKK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNNN
=
DeviceOpInstanceKN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKNN
=
DeviceOpInstanceMK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNNN
=
DeviceOpInstanceMN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
#include "run_contraction_bilinear_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_bilinear_example
(
argc
,
argv
);
}
example/26_contraction/contraction_bilinear_xdl_fp64.cpp
View file @
d3cd6f41
This diff is collapsed.
Click to expand it.
example/26_contraction/contraction_bilinear_xdl_fp64_compute_fp32.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
F64
;
using
BDataType
=
F64
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F64
;
using
DDataType
=
F64
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F64
;
using
ComputeDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
DeviceOpInstanceKKNN
=
DeviceOpInstanceKK_FP64
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNNN
=
DeviceOpInstanceKN_FP64
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKNN
=
DeviceOpInstanceMK_FP64
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNNN
=
DeviceOpInstanceMN_FP64
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
#include "run_contraction_bilinear_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_bilinear_example
(
argc
,
argv
);
}
example/26_contraction/contraction_scale_xdl_bf16_compute_fp32.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
ComputeDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceOpInstanceKKN
=
DeviceOpInstanceKK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNN
=
DeviceOpInstanceKN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKN
=
DeviceOpInstanceMK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNN
=
DeviceOpInstanceMN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
#include "run_contraction_scale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_scale_example
(
argc
,
argv
);
}
example/26_contraction/contraction_scale_xdl_fp16_compute_fp32.cpp
0 → 100644
View file @
d3cd6f41
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "common_instances.hpp"
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ComputeDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceOpInstanceKKN
=
DeviceOpInstanceKK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceKNN
=
DeviceOpInstanceKN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMKN
=
DeviceOpInstanceMK_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstanceMNN
=
DeviceOpInstanceMN_Generic
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ComputeDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
using
DeviceOpInstance
=
DeviceOpInstanceKKN
;
#include "run_contraction_scale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_contraction_scale_example
(
argc
,
argv
);
}
example/26_contraction/contraction_scale_xdl_fp32.cpp
View file @
d3cd6f41
This diff is collapsed.
Click to expand it.
Prev
1
2
3
4
5
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment