Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
d1a50f9f
Commit
d1a50f9f
authored
Aug 30, 2023
by
Jing Zhang
Browse files
seperate grouped gemm splitk out
parent
c8a8385f
Changes
17
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
990 additions
and
371 deletions
+990
-371
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
...ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
+0
-58
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm_splitk.hpp
...ary/tensor_operation_instance/gpu/grouped_gemm_splitk.hpp
+105
-0
library/src/tensor_operation_instance/gpu/grouped_gemm/CMakeLists.txt
...tensor_operation_instance/gpu/grouped_gemm/CMakeLists.txt
+0
-4
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
...grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
+0
-80
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp
...grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp
+0
-75
library/src/tensor_operation_instance/gpu/grouped_gemm_splitk/CMakeLists.txt
...operation_instance/gpu/grouped_gemm_splitk/CMakeLists.txt
+6
-0
library/src/tensor_operation_instance/gpu/grouped_gemm_splitk/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
...mm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
+11
-11
library/src/tensor_operation_instance/gpu/grouped_gemm_splitk/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
...mm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
+11
-11
profiler/include/profiler/profile_grouped_gemm_impl.hpp
profiler/include/profiler/profile_grouped_gemm_impl.hpp
+54
-107
profiler/include/profiler/profile_grouped_gemm_splitk_impl.hpp
...ler/include/profiler/profile_grouped_gemm_splitk_impl.hpp
+360
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_grouped_gemm.cpp
profiler/src/profile_grouped_gemm.cpp
+5
-9
profiler/src/profile_grouped_gemm_splitk.cpp
profiler/src/profile_grouped_gemm_splitk.cpp
+180
-0
test/grouped_gemm/test_grouped_gemm_interface.cpp
test/grouped_gemm/test_grouped_gemm_interface.cpp
+2
-0
test/grouped_gemm/test_grouped_gemm_splitk.cpp
test/grouped_gemm/test_grouped_gemm_splitk.cpp
+1
-1
test/grouped_gemm/test_grouped_gemm_splitk_util.hpp
test/grouped_gemm/test_grouped_gemm_splitk_util.hpp
+249
-0
test/grouped_gemm/test_grouped_gemm_util.hpp
test/grouped_gemm/test_grouped_gemm_util.hpp
+4
-15
No files found.
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
View file @
d1a50f9f
...
@@ -68,58 +68,6 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
...
@@ -68,58 +68,6 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
ELayout
,
typename
ELayout
,
...
@@ -161,17 +109,11 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
...
@@ -161,17 +109,11 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
ELayout
,
Row
>
)
is_same_v
<
ELayout
,
Row
>
)
{
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
ELayout
,
Row
>
)
is_same_v
<
ELayout
,
Row
>
)
{
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
is_same_v
<
ELayout
,
Row
>
)
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm_splitk.hpp
0 → 100644
View file @
d1a50f9f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef CK_ENABLE_FP16
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmSplitK
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemmSplitK
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
Empty_Tuple
,
ELayout
,
ADataType
,
BDataType
,
Empty_Tuple
,
EDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
{
using
DeviceOp
=
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
Empty_Tuple
,
ELayout
,
ADataType
,
BDataType
,
Empty_Tuple
,
EDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
}
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
#endif
library/src/tensor_operation_instance/gpu/grouped_gemm/CMakeLists.txt
View file @
d1a50f9f
...
@@ -4,9 +4,5 @@ add_instance_library(device_grouped_gemm_instance
...
@@ -4,9 +4,5 @@ add_instance_library(device_grouped_gemm_instance
device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
)
)
endif
()
endif
()
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
deleted
100644 → 0
View file @
c8a8385f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// a[m, k] * b[k, n] = e[m, n]
using
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// Currently AK1 must equal BK1 !
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 8, 2, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 128, 128, 32, 8, 2, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 8, 2, 32, 32, 2, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 128, 64, 32, 8, 2, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 4>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 128, 64, 128, 32, 8, 2, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 8, 2, 32, 32, 2, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 16,16, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedGemmXdlSplitKCShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 64, 128, 32, 8, 2, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 8, 32, 1>, S<0, 1, 3, 2>, S<0, 1, 3, 2>, 2, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
1
,
3
,
2
>
,
2
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp
deleted
100644 → 0
View file @
c8a8385f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Empty_Tuple
=
ck
::
Tuple
<>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// a[m, k] * b[n, k] = e[m, n]
using
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
//################################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//################################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//################################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
64
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
32
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
,
DeviceGroupedGemmXdlSplitKCShuffle
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
F32
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
S
<
1
,
4
,
16
,
1
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
2
,
1
,
3
>
,
3
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
>
// clang-format on
>
;
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_gemm_splitk/CMakeLists.txt
0 → 100644
View file @
d1a50f9f
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_instance_library
(
device_grouped_gemm_splitk_instance
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
)
endif
()
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
→
library/src/tensor_operation_instance/gpu/grouped_gemm
_splitk
/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
View file @
d1a50f9f
...
@@ -87,17 +87,17 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc
...
@@ -87,17 +87,17 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instanc
>
;
>
;
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
(
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
SplitK
<
Row
,
Row
,
Row
,
Empty_Tuple
,
Empty_Tuple
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
Empty_Tuple
,
Empty_Tuple
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
PassThrough
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instances
{});
instances
,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_tile_instances
{});
...
...
library/src/tensor_operation_instance/gpu/grouped_gemm/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
→
library/src/tensor_operation_instance/gpu/grouped_gemm
_splitk
/device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
View file @
d1a50f9f
...
@@ -59,17 +59,17 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_tile_instanc
...
@@ -59,17 +59,17 @@ using device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_tile_instanc
>
;
>
;
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
(
void
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
SplitK
<
Row
,
Col
,
Col
,
Empty_Tuple
,
Empty_Tuple
,
Row
,
Row
,
F16
,
F16
,
F16
,
F16
,
Empty_Tuple
,
Empty_Tuple
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
PassThrough
>>>&
instances
)
{
{
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_tile_instances
{});
instances
,
device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_tile_instances
{});
...
...
profiler/include/profiler/profile_grouped_gemm_impl.hpp
View file @
d1a50f9f
...
@@ -8,7 +8,6 @@
...
@@ -8,7 +8,6 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp"
...
@@ -41,8 +40,7 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -41,8 +40,7 @@ bool profile_grouped_gemm_impl(int do_verification,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
const
std
::
vector
<
int
>&
StrideCs
)
int
kbatch
=
1
)
{
{
bool
pass
=
true
;
bool
pass
=
true
;
...
@@ -173,7 +171,6 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -173,7 +171,6 @@ bool profile_grouped_gemm_impl(int do_verification,
float
best_ave_time
=
0
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
...
@@ -223,135 +220,85 @@ bool profile_grouped_gemm_impl(int do_verification,
...
@@ -223,135 +220,85 @@ bool profile_grouped_gemm_impl(int do_verification,
gemm_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
gemm_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
using
DeviceOpSplitK
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSplitK
<
ALayout
,
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
BLayout
,
ck
::
Tuple
<>
,
CLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// skip non-splitk grouped_gemm
if
(
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
==
nullptr
)
{
continue
;
}
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
24
,
32
,
48
,
64
};
if
(
kbatch
>
0
)
{
kbatch_list
=
{
kbatch
};
}
for
(
std
::
size_t
j
=
0
;
j
<
kbatch_list
.
size
();
j
++
)
{
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
c_device_buf
[
i
]
->
SetZero
();
auto
kbatch_curr
=
kbatch_list
[
j
]
;
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
})
;
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
if
(
do_verification
)
->
SetKBatchSize
(
argument_ptr
.
get
(),
kbatch_curr
);
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
c_device_buf
[
i
]
->
SetZero
();
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
}
);
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
()
);
if
(
do_verification
)
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
{
c_m_n_host_results
[
i
]);
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
if
(
do_log
)
{
if
(
std
::
is_same_v
<
CDataType
,
ck
::
half_t
>
&&
kbatch_curr
>
1
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
{
<<
std
::
endl
;
instance_pass
=
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
LogRangeAsType
<
float
>
(
c_m_n_host_results
[
i
],
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
].
mData
,
","
)
"Error: Incorrect results!"
,
<<
std
::
endl
;
0.06
);
LogRangeAsType
<
float
>
(
}
std
::
cout
<<
"c_host : "
,
c_m_n_host_results
[
i
].
mData
,
","
)
else
<<
std
::
endl
;
{
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_results
[
i
]);
}
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
pass
=
pass
&&
instance_pass
;
pass
=
pass
&&
instance_pass
;
}
}
float
ave_time
=
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
if
(
time_kernel
)
{
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
{
std
::
size_t
flop
=
0
,
num_btype
=
0
;
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
", KBatch "
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
std
::
endl
;
<<
kbatch_curr
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
if
(
tflops
>
best_tflops
)
{
{
best_gemm_name
=
gemm_name
;
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
}
}
}
else
}
{
else
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
{
<<
std
::
endl
;
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
}
<<
std
::
endl
;
}
}
}
}
if
(
time_kernel
)
if
(
time_kernel
)
{
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
", KBatch = "
<<
best_kbatch
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
std
::
endl
;
<<
std
::
endl
;
}
}
return
pass
;
return
pass
;
...
...
profiler/include/profiler/profile_grouped_gemm_splitk_impl.hpp
0 → 100644
View file @
d1a50f9f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_splitk.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
>
bool
profile_grouped_gemm_splitk_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
{
bool
pass
=
true
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
size_t
group_count
=
Ms
.
size
();
if
(
!
(
group_count
==
Ns
.
size
()
&&
group_count
==
Ks
.
size
()
&&
group_count
==
StrideAs
.
size
()
&&
group_count
==
StrideBs
.
size
()
&&
group_count
==
StrideCs
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! inconsistent M/N/Ks, StrideA/B/Cs size
\n
"
);
}
std
::
vector
<
Tensor
<
ADataType
>>
a_m_k
;
std
::
vector
<
Tensor
<
BDataType
>>
b_k_n
;
std
::
vector
<
Tensor
<
CDataType
>>
c_m_n_host_results
;
std
::
vector
<
Tensor
<
CDataType
>>
c_m_n_device_results
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_m_k
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ks
[
i
],
StrideAs
[
i
],
ALayout
{})));
b_k_n
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
Ks
[
i
],
Ns
[
i
],
StrideBs
[
i
],
BLayout
{})));
c_m_n_device_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
c_m_n_host_results
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
Ms
[
i
],
Ns
[
i
],
StrideCs
[
i
],
CLayout
{})));
#if DEBUG_LOG
std
::
cout
<<
"group: "
<<
i
<<
" a_m_k["
<<
i
<<
"]:"
<<
a_m_k
[
i
].
mDesc
<<
", b_k_n["
<<
i
<<
"]:"
<<
b_k_n
[
i
].
mDesc
<<
", c_m_n_device_results["
<<
i
<<
"]:"
<<
c_m_n_device_results
[
i
].
mDesc
<<
std
::
endl
;
#endif // DEBUG_LOG
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
},
num_thread
);
b_k_n
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
a_m_k
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
},
num_thread
);
b_k_n
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
},
num_thread
);
}
}
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
c_element_op
=
CElementOp
{};
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_device_buf
,
b_device_buf
,
c_device_buf
;
a_device_buf
.
reserve
(
group_count
);
b_device_buf
.
reserve
(
group_count
);
c_device_buf
.
reserve
(
group_count
);
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
void
*>
p_c
;
p_a
.
reserve
(
group_count
);
p_b
.
reserve
(
group_count
);
p_c
.
reserve
(
group_count
);
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
a_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_m_k
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_k_n
[
i
].
mDesc
.
GetElementSpaceSize
()));
c_device_buf
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_m_n_device_results
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_device_buf
[
i
]
->
ToDevice
(
a_m_k
[
i
].
mData
.
data
());
b_device_buf
[
i
]
->
ToDevice
(
b_k_n
[
i
].
mData
.
data
());
gemm_descs
.
push_back
({
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
p_a
.
push_back
(
a_device_buf
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_device_buf
[
i
]
->
GetDeviceBuffer
());
p_c
.
push_back
(
c_device_buf
[
i
]
->
GetDeviceBuffer
());
}
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
CLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
if
(
op_ptrs
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device GEMM instance found"
);
}
std
::
string
best_gemm_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
float
best_kbatch
=
0
;
auto
p_ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
if
(
do_verification
)
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
[
i
],
b_k_n
[
i
],
c_m_n_host_results
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
}
// profile device GEMM instances
for
(
auto
&
gemm_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
gemm_ptr
->
MakeArgumentPointer
(
p_a
,
p_b
,
p_ds
,
p_c
,
gemm_descs
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
auto
invoker_ptr
=
gemm_ptr
->
MakeInvokerPointer
();
DeviceMem
gemm_desc_workspace
(
gemm_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
()));
gemm_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
gemm_desc_workspace
.
GetDeviceBuffer
());
std
::
string
gemm_name
=
gemm_ptr
->
GetTypeString
();
using
DeviceOpSplitK
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmSplitK
<
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
CLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<>
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
// skip non-splitk grouped_gemm
if
(
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
==
nullptr
)
{
continue
;
}
std
::
vector
<
int
>
kbatch_list
=
{
1
,
2
,
4
,
8
,
12
,
16
,
20
,
24
,
32
,
48
,
64
};
if
(
kbatch
>
0
)
{
kbatch_list
=
{
kbatch
};
}
for
(
std
::
size_t
j
=
0
;
j
<
kbatch_list
.
size
();
j
++
)
{
auto
kbatch_curr
=
kbatch_list
[
j
];
dynamic_cast
<
DeviceOpSplitK
*>
(
gemm_ptr
.
get
())
->
SetKBatchSize
(
argument_ptr
.
get
(),
kbatch_curr
);
if
(
gemm_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
c_device_buf
[
i
]
->
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
if
(
do_verification
)
{
bool
instance_pass
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_device_buf
[
i
]
->
FromDevice
(
c_m_n_device_results
[
i
].
mData
.
data
());
if
(
std
::
is_same_v
<
CDataType
,
ck
::
half_t
>
&&
kbatch_curr
>
1
)
{
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_results
[
i
],
"Error: Incorrect results!"
,
0.06
);
}
else
{
instance_pass
=
instance_pass
&&
ck
::
utils
::
check_err
(
c_m_n_device_results
[
i
],
c_m_n_host_results
[
i
]);
}
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a : "
,
a_m_k
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b: "
,
b_k_n
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_device: "
,
c_m_n_device_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_host : "
,
c_m_n_host_results
[
i
].
mData
,
","
)
<<
std
::
endl
;
}
}
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
" verification "
<<
(
instance_pass
?
"SUCCEED"
:
"FAILED"
)
<<
std
::
endl
;
pass
=
pass
&&
instance_pass
;
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
{
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
flop
+=
std
::
size_t
(
2
)
*
Ms
[
i
]
*
Ns
[
i
]
*
Ks
[
i
];
num_btype
+=
sizeof
(
ADataType
)
*
Ms
[
i
]
*
Ks
[
i
]
+
sizeof
(
BDataType
)
*
Ks
[
i
]
*
Ns
[
i
]
+
sizeof
(
CDataType
)
*
Ms
[
i
]
*
Ns
[
i
];
}
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm_name
<<
", KBatch "
<<
kbatch_curr
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_gemm_name
=
gemm_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
best_kbatch
=
kbatch_curr
;
}
}
}
else
{
std
::
cout
<<
"Instance: "
<<
gemm_name
<<
", does not support this GEMM problem"
<<
std
::
endl
;
}
}
}
if
(
time_kernel
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_gemm_name
<<
", KBatch = "
<<
best_kbatch
<<
std
::
endl
;
}
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
d1a50f9f
...
@@ -39,6 +39,7 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
...
@@ -39,6 +39,7 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_splitk.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
endif
()
endif
()
...
@@ -89,6 +90,7 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
...
@@ -89,6 +90,7 @@ if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_add_relu_gemm_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_add_relu_gemm_add_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
endif
()
endif
()
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_grouped_gemm.cpp
View file @
d1a50f9f
...
@@ -87,7 +87,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -87,7 +87,7 @@ int profile_grouped_gemm(int argc, char* argv[])
const
auto
StrideAs
=
argToIntArray
(
argv
[
11
]);
const
auto
StrideAs
=
argToIntArray
(
argv
[
11
]);
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
#ifdef CK_ENABLE_FP16
#ifdef CK_ENABLE_FP16
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
{
...
@@ -106,8 +106,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -106,8 +106,7 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks
,
Ks
,
StrideAs
,
StrideAs
,
StrideBs
,
StrideBs
,
StrideCs
,
StrideCs
);
kbatch
);
}
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
{
...
@@ -126,8 +125,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -126,8 +125,7 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks
,
Ks
,
StrideAs
,
StrideAs
,
StrideBs
,
StrideBs
,
StrideCs
,
StrideCs
);
kbatch
);
}
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
{
...
@@ -146,8 +144,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -146,8 +144,7 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks
,
Ks
,
StrideAs
,
StrideAs
,
StrideBs
,
StrideBs
,
StrideCs
,
StrideCs
);
kbatch
);
}
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
{
...
@@ -166,8 +163,7 @@ int profile_grouped_gemm(int argc, char* argv[])
...
@@ -166,8 +163,7 @@ int profile_grouped_gemm(int argc, char* argv[])
Ks
,
Ks
,
StrideAs
,
StrideAs
,
StrideBs
,
StrideBs
,
StrideCs
,
StrideCs
);
kbatch
);
}
}
else
else
{
{
...
...
profiler/src/profile_grouped_gemm_splitk.cpp
0 → 100644
View file @
d1a50f9f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_gemm_splitk_impl.hpp"
#include "profiler_operation_registry.hpp"
enum
struct
GemmMatrixLayout
{
MK_KN_MN
,
// 0
MK_NK_MN
,
// 1
KM_KN_MN
,
// 2
KM_NK_MN
,
// 3
};
enum
struct
GemmDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
};
#define OP_NAME "grouped_gemm_splitk"
#define OP_DESC "Grouped GEMM SplitK"
namespace
{
std
::
vector
<
int
>
argToIntArray
(
char
*
input
)
{
std
::
vector
<
int
>
out
;
std
::
istringstream
in
(
input
);
std
::
string
item
;
while
(
std
::
getline
(
in
,
item
,
','
))
{
out
.
push_back
(
std
::
stoi
(
item
));
}
return
out
;
}
int
profile_grouped_gemm_splitk
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
14
)
{
std
::
cout
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)
\n
"
<<
"arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];
\n
"
<<
" 1: A[m, k] * B[n, k] = C[m, n];
\n
"
<<
" 2: A[k, m] * B[k, n] = C[m, n];
\n
"
<<
" 3: A[k, m] * B[n, k] = C[m, n])
\n
"
<<
"arg4: verification (0: no; 1: yes)
\n
"
<<
"arg5: initialization (0: no init; 1: integer value; 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0=n0, 1=yes)
\n
"
<<
"arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
"64,64 64,64 128,128)
\n
"
<<
"arg15: kbatch value (default 4)
\n
"
<<
std
::
endl
;
exit
(
1
);
}
const
auto
data_type
=
static_cast
<
GemmDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
GemmMatrixLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
auto
Ms
=
argToIntArray
(
argv
[
8
]);
const
auto
Ns
=
argToIntArray
(
argv
[
9
]);
const
auto
Ks
=
argToIntArray
(
argv
[
10
]);
const
auto
StrideAs
=
argToIntArray
(
argv
[
11
]);
const
auto
StrideBs
=
argToIntArray
(
argv
[
12
]);
const
auto
StrideCs
=
argToIntArray
(
argv
[
13
]);
const
int
kbatch
=
argc
==
15
?
std
::
stoi
(
argv
[
14
])
:
1
;
#ifdef CK_ENABLE_FP16
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_splitk_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
MK_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_splitk_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_KN_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_splitk_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
}
else
if
(
data_type
==
GemmDataType
::
F16_F16_F16
&&
layout
==
GemmMatrixLayout
::
KM_NK_MN
)
{
ck
::
profiler
::
profile_grouped_gemm_splitk_impl
<
ck
::
half_t
,
ck
::
half_t
,
ck
::
half_t
,
float
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
ColumnMajor
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
}
else
{
throw
std
::
runtime_error
(
"wrong! this GEMM data_type & layout is not implemented"
);
}
#endif
return
0
;
}
}
// anonymous namespace
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_gemm_splitk
);
test/grouped_gemm/test_grouped_gemm_interface.cpp
View file @
d1a50f9f
...
@@ -93,6 +93,7 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, VectorLoadWidth)
...
@@ -93,6 +93,7 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, VectorLoadWidth)
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
}
}
#if 0
TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
{
{
std::vector<int> Ms{128, 256, 256, 512};
std::vector<int> Ms{128, 256, 256, 512};
...
@@ -116,6 +117,7 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
...
@@ -116,6 +117,7 @@ TEST_F(TestGGemmSplitKInterface_MKNKMN, KLoops)
EXPECT_THROW(DefaultGGemmInstance{}.Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch),
EXPECT_THROW(DefaultGGemmInstance{}.Run(Ms, Ns, Ks, StrideAs, StrideBs, StrideCs, kbatch),
std::runtime_error);
std::runtime_error);
}
}
#endif
class
TestGGemmSplitKInterface_KMKNNM
:
public
::
testing
::
Test
class
TestGGemmSplitKInterface_KMKNNM
:
public
::
testing
::
Test
{
{
...
...
test/grouped_gemm/test_grouped_gemm_splitk.cpp
View file @
d1a50f9f
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
#include "ck/utility/data_type.hpp"
#include "ck/utility/data_type.hpp"
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "test_grouped_gemm_util.hpp"
#include "test_grouped_gemm_
splitk_
util.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
...
...
test/grouped_gemm/test_grouped_gemm_splitk_util.hpp
0 → 100644
View file @
d1a50f9f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <string>
#include <sstream>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/number.hpp"
#include "profiler/profile_grouped_gemm_splitk_impl.hpp"
namespace
ck
{
namespace
test
{
template
<
typename
Range
>
std
::
string
serialize_range
(
const
Range
&
range
)
{
std
::
stringstream
ss
;
for
(
auto
&
r
:
range
)
{
ss
<<
r
<<
", "
;
}
std
::
string
str
=
ss
.
str
();
return
std
::
string
(
str
.
begin
(),
str
.
end
()
-
2
);
}
template
<
typename
Tuple
>
class
TestGroupedGemm
:
public
testing
::
TestWithParam
<
int
>
{
protected:
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
ELayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
ADataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
EDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
public:
static
constexpr
bool
verify_
=
true
;
static
constexpr
int
init_method_
=
1
;
// decimal value initialization
static
constexpr
bool
log_
=
false
;
static
constexpr
bool
bench_
=
false
;
// measure kernel performance
void
SetUp
()
override
{}
void
Run
(
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
{
bool
pass
=
ck
::
profiler
::
profile_grouped_gemm_splitk_impl
<
ADataType
,
BDataType
,
EDataType
,
float
,
ALayout
,
BLayout
,
ELayout
>
(
verify_
,
init_method_
,
log_
,
bench_
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
EXPECT_TRUE
(
pass
);
}
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
>
struct
DeviceGroupedGemmSplitkInstanceWrapper
{
using
F16
=
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
EmptyTuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
using
ABlockTransferThreadClusterArrageOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
1
,
3
,
2
>>
;
using
ABlockTransferSrcAccessOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
1
,
3
,
2
>>
;
using
ABlockTransferSrcVectorDim
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
3
>
,
I
<
2
>>
;
using
ABlockTransferDstScalarPerVector_K1
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
8
>
,
I
<
2
>>
;
using
ABlockLdsAddExtraM
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
1
>
,
I
<
0
>>
;
using
BBlockTransferThreadClusterArrageOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
BLayout
,
Row
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
2
,
1
,
3
>>
;
using
BBlockTransferSrcAccessOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
BLayout
,
Row
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
2
,
1
,
3
>>
;
using
BBlockTransferSrcVectorDim
=
std
::
conditional_t
<
std
::
is_same_v
<
BLayout
,
Row
>
,
I
<
2
>
,
I
<
3
>>
;
using
BBlockTransferDstScalarPerVector_K1
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
2
>
,
I
<
8
>>
;
using
BBlockLdsAddExtraM
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
0
>
,
I
<
1
>>
;
using
DeviceGroupedGemmSplitKInstance
=
tensor_operation
::
device
::
DeviceGroupedGemmXdlSplitKCShuffle
<
ALayout
,
BLayout
,
EmptyTuple
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
EmptyTuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
KPerBlock
,
K1
,
K1
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
16
,
1
>
,
ABlockTransferThreadClusterArrageOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
::
value
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
::
value
,
ABlockLdsAddExtraM
::
value
,
S
<
1
,
4
,
16
,
1
>
,
BBlockTransferThreadClusterArrageOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
::
value
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
::
value
,
BBlockLdsAddExtraM
::
value
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
CDEBlockTransferScalarPerVector_NPerBlock
>
;
bool
IsSupported
(
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
const
{
std
::
size_t
n_groups
=
Ms
.
size
();
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
StrideBs
.
size
()
==
n_groups
&&
StrideCs
.
size
()
==
n_groups
)
<<
"The number of groups is not consistent!"
;
std
::
vector
<
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
for
(
std
::
size_t
i
=
0
;
i
<
n_groups
;
++
i
)
{
gemm_descs
.
push_back
(
tensor_operation
::
device
::
GemmDesc
{
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
}
std
::
vector
<
const
void
*>
p_As
(
n_groups
,
nullptr
);
std
::
vector
<
const
void
*>
p_Bs
(
n_groups
,
nullptr
);
std
::
vector
<
void
*>
p_Cs
(
n_groups
,
nullptr
);
auto
p_Ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
argument
=
ggemm_instance
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
if
(
kbatch
>
1
)
{
ggemm_instance
.
SetKBatchSize
(
argument
,
kbatch
);
}
return
ggemm_instance
.
IsSupportedArgument
(
argument
);
}
float
Run
(
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
const
{
std
::
size_t
n_groups
=
Ms
.
size
();
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
StrideBs
.
size
()
==
n_groups
&&
StrideCs
.
size
()
==
n_groups
)
<<
"The number of groups is not consistent!"
;
std
::
vector
<
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
for
(
std
::
size_t
i
=
0
;
i
<
n_groups
;
++
i
)
{
gemm_descs
.
push_back
(
tensor_operation
::
device
::
GemmDesc
{
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
}
std
::
vector
<
const
void
*>
p_As
(
n_groups
,
nullptr
);
std
::
vector
<
const
void
*>
p_Bs
(
n_groups
,
nullptr
);
std
::
vector
<
void
*>
p_Cs
(
n_groups
,
nullptr
);
auto
p_Ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
argument
=
ggemm_instance
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
if
(
kbatch
>
1
)
{
ggemm_instance
.
SetKBatchSize
(
argument
,
kbatch
);
}
EXPECT_TRUE
(
ggemm_instance
.
IsSupportedArgument
(
argument
));
auto
invoker
=
ggemm_instance
.
MakeInvoker
();
DeviceMem
gemm_desc_workspace
(
ggemm_instance
.
GetWorkSpaceSize
(
&
argument
));
ggemm_instance
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
return
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
}
};
}
// namespace test
}
// namespace ck
test/grouped_gemm/test_grouped_gemm_util.hpp
View file @
d1a50f9f
...
@@ -62,8 +62,7 @@ class TestGroupedGemm : public testing::TestWithParam<int>
...
@@ -62,8 +62,7 @@ class TestGroupedGemm : public testing::TestWithParam<int>
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
const
std
::
vector
<
int
>&
StrideCs
)
int
kbatch
=
1
)
{
{
bool
pass
=
ck
::
profiler
::
profile_grouped_gemm_impl
<
ADataType
,
bool
pass
=
ck
::
profiler
::
profile_grouped_gemm_impl
<
ADataType
,
BDataType
,
BDataType
,
...
@@ -72,7 +71,7 @@ class TestGroupedGemm : public testing::TestWithParam<int>
...
@@ -72,7 +71,7 @@ class TestGroupedGemm : public testing::TestWithParam<int>
ALayout
,
ALayout
,
BLayout
,
BLayout
,
ELayout
>
(
ELayout
>
(
verify_
,
init_method_
,
log_
,
bench_
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
verify_
,
init_method_
,
log_
,
bench_
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
);
EXPECT_TRUE
(
pass
);
EXPECT_TRUE
(
pass
);
}
}
};
};
...
@@ -171,8 +170,7 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
...
@@ -171,8 +170,7 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
const
std
::
vector
<
int
>&
StrideCs
)
const
int
kbatch
=
1
)
const
{
{
std
::
size_t
n_groups
=
Ms
.
size
();
std
::
size_t
n_groups
=
Ms
.
size
();
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
...
@@ -195,10 +193,6 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
...
@@ -195,10 +193,6 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
argument
=
ggemm_instance
.
MakeArgument
(
auto
argument
=
ggemm_instance
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
if
(
kbatch
>
1
)
{
ggemm_instance
.
SetKBatchSize
(
argument
,
kbatch
);
}
return
ggemm_instance
.
IsSupportedArgument
(
argument
);
return
ggemm_instance
.
IsSupportedArgument
(
argument
);
}
}
...
@@ -208,8 +202,7 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
...
@@ -208,8 +202,7 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
const
std
::
vector
<
int
>&
StrideCs
)
const
int
kbatch
=
1
)
const
{
{
std
::
size_t
n_groups
=
Ms
.
size
();
std
::
size_t
n_groups
=
Ms
.
size
();
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
...
@@ -232,10 +225,6 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
...
@@ -232,10 +225,6 @@ struct DeviceGroupedGemmSplitkInstanceWrapper
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
argument
=
ggemm_instance
.
MakeArgument
(
auto
argument
=
ggemm_instance
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
if
(
kbatch
>
1
)
{
ggemm_instance
.
SetKBatchSize
(
argument
,
kbatch
);
}
EXPECT_TRUE
(
ggemm_instance
.
IsSupportedArgument
(
argument
));
EXPECT_TRUE
(
ggemm_instance
.
IsSupportedArgument
(
argument
));
auto
invoker
=
ggemm_instance
.
MakeInvoker
();
auto
invoker
=
ggemm_instance
.
MakeInvoker
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment