"git@developer.sourcefind.cn:gaoqiong/composable_kernel.git" did not exist on "e87aa851eabd7d4e6733e77be744d2ca39caa1c8"
Commit d1628241 authored by rocking's avatar rocking
Browse files

Add unit test for gemm_xdl int8

parent bfb3f413
...@@ -46,6 +46,12 @@ set(CONVND_FWD_XDL_SOURCE convnd_fwd_xdl/main.cpp) ...@@ -46,6 +46,12 @@ set(CONVND_FWD_XDL_SOURCE convnd_fwd_xdl/main.cpp)
add_executable(test_convnd_fwd_xdl ${CONVND_FWD_XDL_SOURCE}) add_executable(test_convnd_fwd_xdl ${CONVND_FWD_XDL_SOURCE})
target_link_libraries(test_convnd_fwd_xdl PRIVATE host_tensor) target_link_libraries(test_convnd_fwd_xdl PRIVATE host_tensor)
# test_gemm_xdl_int8
set(GEMM_XDL_INT8_SOURCE gemm_xdl/test_gemm_int8.cpp)
add_executable(test_gemm_xdl_int8 ${GEMM_XDL_INT8_SOURCE})
target_link_libraries(test_gemm_xdl_int8 PRIVATE host_tensor)
target_link_libraries(test_gemm_xdl_int8 PRIVATE device_gemm_instance)
# test space_filling_curve_ # test space_filling_curve_
set(SPACE_FILLING_CURVE_SOURCE space_filling_curve/space_filling_curve.cpp) set(SPACE_FILLING_CURVE_SOURCE space_filling_curve/space_filling_curve.cpp)
add_executable(space_filling_curve ${SPACE_FILLING_CURVE_SOURCE}) add_executable(space_filling_curve ${SPACE_FILLING_CURVE_SOURCE})
......
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
namespace ck {
namespace gemm_util {
struct GemmParams
{
GemmParams()
: M(1024), N(1024), K(1024), StrideA(1024), StrideB(1024), StrideC(1024), alpha(1), beta(0)
{
}
ck::index_t M;
ck::index_t N;
ck::index_t K;
ck::index_t StrideA;
ck::index_t StrideB;
ck::index_t StrideC;
float alpha;
float beta;
};
template <typename GemmInstance,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
void RunHostGEMM(const Tensor<ADataType>& A,
const Tensor<BDataType>& B,
Tensor<CDataType>& C,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
auto ref_gemm = GemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(A, B, C, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
template <typename DeviceGemmPtr_,
typename ADataType,
typename BDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
const ck::gemm_util::GemmParams& params,
const Tensor<ADataType>& A,
const Tensor<BDataType>& B,
Tensor<CDataType>& C,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
DeviceMem a_m_k_device_buf(sizeof(ADataType) * A.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(A.mData.data());
b_k_n_device_buf.ToDevice(B.mData.data());
auto invoker_ptr = gemmPtr->MakeInvokerPointer();
auto argument_ptr =
gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
params.M,
params.N,
params.K,
params.StrideA,
params.StrideB,
params.StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemmPtr->IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
invoker_ptr->Run(argument_ptr.get());
c_m_n_device_buf.FromDevice(C.mData.data());
}
} // namespace gemm_util
} // namespace ck
#endif
#include <algorithm>
#include <cstdlib>
#include <half.hpp>
#include <iostream>
#include <numeric>
#include <tuple>
#include <vector>
#include "gemm_util.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceGemmPtr_ =
ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(std::vector<DeviceGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace {
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using AccDataType = int32_t;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(
f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
Tensor<BDataType> b_k_n(
f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
}
bool TestGemm(DeviceGemmPtr_& gemmPtr)
{
// Arrange
ck::gemm_util::GemmParams params;
params.M = 1024;
params.N = 1024;
params.K = 1024;
params.StrideA = 1024;
params.StrideB = 1024;
params.StrideC = 1024;
auto host_tensors = PrepareGemmTensor(params);
const Tensor<ADataType>& a = std::get<0>(host_tensors);
const Tensor<BDataType>& b = std::get<1>(host_tensors);
Tensor<CDataType>& c_host = std::get<2>(host_tensors);
Tensor<CDataType>& c_device = std::get<3>(host_tensors);
auto a_element_op = PassThrough{};
auto b_element_op = PassThrough{};
auto c_element_op = PassThrough{};
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
a, b, c_host, a_element_op, b_element_op, c_element_op);
// Act
ck::gemm_util::RunDeviceGEMM(
gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);
// Assert
bool res = test_util::check_err(c_device.mData, c_host.mData, "Error: incorrect results!");
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
return res;
}
} // anonymous namespace
int main()
{
std::vector<DeviceGemmPtr_> gemmPtrs;
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(gemmPtrs);
bool res = true;
for(auto& gemmPtr : gemmPtrs)
{
res &= TestGemm(gemmPtr);
}
std::cout << "TestGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment