Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
cff6de7e
Unverified
Commit
cff6de7e
authored
Nov 28, 2023
by
Bartlomiej Wroblewski
Committed by
GitHub
Nov 28, 2023
Browse files
Merge branch 'develop' into bwroblew/test_remove_sleep
parents
61123e03
6ef034f6
Changes
28
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
487 additions
and
141 deletions
+487
-141
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+189
-141
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+34
-0
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
...shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
+54
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
+51
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
+51
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
+50
-0
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
...shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
+53
-0
No files found.
include/ck/utility/type_convert.hpp
View file @
cff6de7e
...
...
@@ -95,9 +95,113 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
return
type_convert
<
bhalf_t
>
(
x_fp32
);
}
// convert fp32 to fp8
// Declare a template function for fp8 conversion using SR
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_sr
(
X
x
);
// convert fp32 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
float
>
(
float
x
)
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
float
>
(
float
x
)
{
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
float
max_fp8
=
240.0
f
;
x
=
x
>
max_fp8
?
max_fp8
:
(
x
<
-
max_fp8
?
-
max_fp8
:
x
);
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
return
utils
::
cast_to_f8
<
float
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp16 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp32 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
float
>
(
float
x
)
{
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
return
utils
::
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp16 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// Declare a template function for fp8 conversion using RNE
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_rne
(
X
x
);
// convert fp32 to fp8 with rounding to nearest even
template
<
>
inline
__host__
__device__
f8_t
f8_convert_rne
<
f8_t
,
float
>
(
float
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
float
max_fp8
=
240.0
f
;
...
...
@@ -124,6 +228,80 @@ inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
#endif
}
// convert fp16 to fp8 with rounding to nearest even
template
<
>
inline
__host__
__device__
f8_t
f8_convert_rne
<
f8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_rne
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
uint32_t
rng
=
0
;
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp32 to bf8 with rounding to nearest even
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_rne
<
bf8_t
,
float
>
(
float
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
uint32_t
rng
=
0
;
return
utils
::
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp16 to bf8 with rounding to nearest even
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_rne
<
bf8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_rne
<
bf8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
uint32_t
rng
=
0
;
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp32 to fp8
template
<
>
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
float
>
(
float
x
)
{
#if defined CK_USE_SR_F8_CONVERSION
return
f8_convert_sr
<
f8_t
>
(
x
);
#else
return
f8_convert_rne
<
f8_t
>
(
x
);
#endif
}
// convert fp8 to fp32
template
<
>
inline
__host__
__device__
float
type_convert
<
float
,
f8_t
>
(
f8_t
x
)
...
...
@@ -174,17 +352,10 @@ inline __host__ __device__ half2_t type_convert<half2_t, float2_t>(float2_t x)
template
<
>
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
type_convert
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#if defined CK_USE_SR_F8_CONVERSION
return
f8_convert_sr
<
f8_t
>
(
x
);
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
uint32_t
rng
=
0
;
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
return
f8_convert_nre
<
f8_t
>
(
x
);
#endif
}
...
...
@@ -205,26 +376,10 @@ inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
template
<
>
inline
__host__
__device__
bf8_t
type_convert
<
bf8_t
,
float
>
(
float
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
#if defined CK_USE_SR_F8_CONVERSION
return
f8_convert_sr
<
bf8_t
>
(
x
);
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
uint32_t
rng
=
0
;
return
utils
::
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
return
f8_convert_rne
<
bf8_t
>
(
x
);
#endif
}
...
...
@@ -248,17 +403,10 @@ inline __host__ __device__ float type_convert<float, bf8_t>(bf8_t x)
template
<
>
inline
__host__
__device__
bf8_t
type_convert
<
bf8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
type_convert
<
bf8_t
>
(
type_convert
<
float
>
(
x
));
#if defined CK_USE_SR_F8_CONVERSION
return
f8_convert_sr
<
bf8_t
>
(
x
);
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
uint32_t
rng
=
0
;
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
return
f8_convert_rne
<
bf8_t
>
(
x
);
#endif
}
...
...
@@ -331,104 +479,4 @@ inline __host__ __device__ constexpr bhalf_t bf16_convert_rtn<bhalf_t, half_t>(h
return
bf16_convert_rtn
<
bhalf_t
>
(
x_fp32
);
}
// Declare a template function for fp8 conversion using SR
template
<
typename
Y
,
typename
X
>
__host__
__device__
constexpr
Y
f8_convert_sr
(
X
x
);
// convert fp32 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
float
>
(
float
x
)
{
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
return
utils
::
cast_to_f8
<
float
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp16 to fp8 with stochastic rounding
template
<
>
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp32 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
float
>
(
float
x
)
{
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
return
utils
::
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
// convert fp16 to bf8 with stochastic rounding
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
half_t
>
(
half_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
// as thread id is not available on host, use 0 for prn generation
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#endif
}
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
cff6de7e
...
...
@@ -227,6 +227,10 @@ void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_BF16
void
add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instances
(
...
...
@@ -289,6 +293,26 @@ void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP64
void
add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances
(
...
...
@@ -382,6 +406,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dl_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
@@ -391,6 +417,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dl_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
@@ -400,6 +428,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dl_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
@@ -409,6 +439,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_dl_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
#endif
add_device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
}
}
#ifdef CK_ENABLE_FP16
...
...
@@ -439,6 +471,8 @@ struct DeviceOperationInstanceFactory<
#endif
add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
...
...
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
cff6de7e
...
...
@@ -13,6 +13,10 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
...
...
@@ -41,6 +45,7 @@ list(APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_instance.cpp
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
0 → 100644
View file @
cff6de7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmMNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNPadding
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
0 → 100644
View file @
cff6de7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
0 → 100644
View file @
cff6de7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Col
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
0 → 100644
View file @
cff6de7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Row
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
0 → 100644
View file @
cff6de7e
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_lds_direct_load.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmMNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
using
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
=
std
::
tuple
<
// clang-format off
// ##################################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ##################################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraM| ThreadCluster| SrcAccessOrder| SrcVectorDim| Scalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ##################################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| | | PerVector| | Lengths_K0_N_K1| | | PerVector| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ##################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceGemm_Xdl_CShuffle_LdsDirectLoad
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmMNPadding
,
1
,
256
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
S
<
4
,
8
,
8
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
void
add_device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment