Commit ccd26cbd authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Re-structure example files

parent ef22508c
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstddef>
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
struct ExecutionConfig final
{
bool do_verification = true;
bool time_kernel = false;
};
struct Problem final
{
std::array<std::size_t, 4> shape = {4, 16, 32, 32};
std::array<std::size_t, 4> axes = {0, 2, 3, 1};
};
inline bool parse_cmd_args(int argc, char* argv[], ExecutionConfig& config, Problem& problem)
{
return true;
}
#include <iostream>
#include <cstdlib>
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "common.hpp"
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
......@@ -26,80 +18,6 @@ using DeviceElementwisePermuteInstance =
ck::Sequence<8>,
ck::Sequence<1>>;
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B,
const HostTensorA& A,
const std::vector<std::size_t>& shape,
Functor functor)
{
using btype = ck::remove_reference_t<decltype(B(0, 0, 0, 0))>;
for(std::size_t n = 0; n < shape[0]; ++n)
for(std::size_t c = 0; c < shape[1]; ++c)
for(std::size_t h = 0; h < shape[2]; ++h)
for(std::size_t w = 0; w < shape[3]; ++w)
{
auto a_val = A(n, c, h, w);
btype b_val = 0;
functor(b_val, a_val);
B(n, h, w, c) = b_val;
}
}
int main()
{
bool do_verification = true;
bool time_kernel = false;
std::size_t N = 4, C = 16, H = 32, W = 32;
std::vector<std::size_t> nchw = {N, C, H, W};
std::vector<std::size_t> nhwc = {N, H, W, C};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides;
std::array<ck::index_t, 4> b_strides;
std::copy(nchw.begin(), nchw.end(), ab_lengths.begin());
std::copy(a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end(), a_strides.begin());
std::copy(b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end(), b_strides.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time =
broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
bool pass = true;
if(do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D<Tensor<ADataType>, Tensor<BDataType>, PassThrough>(
host_b, a, nhwc, PassThrough{});
pass &=
ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
#include "run_elementwise_permute_example.inc"
return pass ? 0 : 1;
}
int main(int argc, char* argv[]) { return !run_elementwise_permute_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename HostTensorA, typename HostTensorB, typename Functor>
void host_elementwise4D(HostTensorB& B,
const HostTensorA& A,
const std::vector<std::size_t>& shape,
Functor functor)
{
using btype = ck::remove_reference_t<decltype(B(0, 0, 0, 0))>;
for(std::size_t n = 0; n < shape[0]; ++n)
for(std::size_t c = 0; c < shape[1]; ++c)
for(std::size_t h = 0; h < shape[2]; ++h)
for(std::size_t w = 0; w < shape[3]; ++w)
{
auto a_val = A(n, c, h, w);
btype b_val = 0;
functor(b_val, a_val);
B(n, h, w, c) = b_val;
}
}
bool run_elementwise_permute(const ExecutionConfig& config, const Problem& problem)
{
std::size_t N = 4, C = 16, H = 32, W = 32;
std::vector<std::size_t> nchw = {N, C, H, W};
std::vector<std::size_t> nhwc = {N, H, W, C};
Tensor<ADataType> a(nchw);
Tensor<BDataType> b(nhwc);
a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a.mData.data());
std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
std::array<void*, 1> output = {b_device_buf.GetDeviceBuffer()};
std::array<ck::index_t, 4> ab_lengths;
std::array<ck::index_t, 4> a_strides;
std::array<ck::index_t, 4> b_strides;
std::copy(nchw.begin(), nchw.end(), ab_lengths.begin());
std::copy(a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end(), a_strides.begin());
std::copy(b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end(), b_strides.begin());
auto broadcastPermute = DeviceElementwisePermuteInstance{};
auto argument = broadcastPermute.MakeArgumentPointer(
ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});
if(!broadcastPermute.IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"The runtime parameters seems not supported by the device instance, exiting!");
};
auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
float ave_time = broadcastPermute_invoker_ptr->Run(argument.get(),
StreamConfig{nullptr, config.time_kernel});
std::cout << "Perf: " << ave_time << " ms" << std::endl;
if(config.do_verification)
{
b_device_buf.FromDevice(b.mData.data());
Tensor<BDataType> host_b(nhwc);
host_elementwise4D<Tensor<ADataType>, Tensor<BDataType>, PassThrough>(
host_b, a, nhwc, PassThrough{});
return ck::utils::check_err(
b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
}
return true;
}
bool run_elementwise_permute_example(int argc, char* argv[])
{
ExecutionConfig config;
Problem problem;
return parse_cmd_args(argc, argv, config, problem) && run_elementwise_permute(config, problem);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment