Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
cb30a0c0
Commit
cb30a0c0
authored
Oct 25, 2023
by
Jing Zhang
Browse files
improve kpad
parent
bec84efb
Changes
6
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
243 additions
and
185 deletions
+243
-185
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+6
-6
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp
...tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp
+91
-46
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
...vice_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
+5
-0
library/src/tensor_operation_instance/gpu/gemm_splitk/device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
.../device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
+49
-40
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+91
-91
script/cmake-ck-dev.sh
script/cmake-ck-dev.sh
+1
-2
No files found.
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
cb30a0c0
...
@@ -141,7 +141,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -141,7 +141,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
index_t
MPadded_
,
index_t
MPadded_
,
index_t
NPadded_
,
index_t
NPadded_
,
index_t
KPadded_
,
index_t
KPadded_
,
index_t
K0_
,
index_t
K0
Padded
_
,
index_t
k_batch_
,
index_t
k_batch_
,
AElementwiseOperation
a_element_op_
,
AElementwiseOperation
a_element_op_
,
BElementwiseOperation
b_element_op_
,
BElementwiseOperation
b_element_op_
,
...
@@ -158,7 +158,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -158,7 +158,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
MPadded_
,
MPadded_
,
NPadded_
,
NPadded_
,
KPadded_
,
KPadded_
,
K0_
,
K0
Padded
_
,
k_batch_
),
k_batch_
),
a_element_op
(
a_element_op_
),
a_element_op
(
a_element_op_
),
b_element_op
(
b_element_op_
),
b_element_op
(
b_element_op_
),
...
@@ -198,9 +198,9 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -198,9 +198,9 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const
auto
b2c_map
=
DefaultBlock2CTileMap
{};
const
auto
b2c_map
=
DefaultBlock2CTileMap
{};
index_t
gdx
,
gdy
,
gdz
;
index_t
gdx
,
gdy
,
gdz
;
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
b2c_map
.
CalculateGridSize
(
karg
.
M
,
karg
.
N
,
karg
.
k_batch
);
std
::
tie
(
gdx
,
gdy
,
gdz
)
=
b2c_map
.
CalculateGridSize
(
karg
.
M
,
karg
.
N
,
karg
.
k_batch
);
const
auto
K0
=
karg
.
K0
;
const
auto
K0
Padded
=
karg
.
K0
Padded
;
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
Padded
);
float
ave_time
=
0
;
float
ave_time
=
0
;
...
@@ -342,7 +342,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -342,7 +342,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
GridwiseGemm
::
CalculateMPadded
(
M
),
GridwiseGemm
::
CalculateMPadded
(
M
),
GridwiseGemm
::
CalculateNPadded
(
N
),
GridwiseGemm
::
CalculateNPadded
(
N
),
GridwiseGemm
::
CalculateKPadded
(
K
,
KBatch
),
GridwiseGemm
::
CalculateKPadded
(
K
,
KBatch
),
GridwiseGemm
::
CalculateK0
(
K
,
KBatch
),
GridwiseGemm
::
CalculateK0
Padded
(
K
,
KBatch
),
KBatch
,
KBatch
,
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
...
@@ -378,7 +378,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -378,7 +378,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
GridwiseGemm
::
CalculateMPadded
(
M
),
GridwiseGemm
::
CalculateMPadded
(
M
),
GridwiseGemm
::
CalculateNPadded
(
N
),
GridwiseGemm
::
CalculateNPadded
(
N
),
GridwiseGemm
::
CalculateKPadded
(
K
,
KBatch
),
GridwiseGemm
::
CalculateKPadded
(
K
,
KBatch
),
GridwiseGemm
::
CalculateK0
(
K
,
KBatch
),
GridwiseGemm
::
CalculateK0
Padded
(
K
,
KBatch
),
KBatch
,
KBatch
,
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp
View file @
cb30a0c0
...
@@ -136,7 +136,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -136,7 +136,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
MPadded
;
index_t
MPadded
;
index_t
NPadded
;
index_t
NPadded
;
index_t
KPadded
;
index_t
KPadded
;
index_t
K0
;
index_t
K0
Padded
;
index_t
k_batch
;
index_t
k_batch
;
Argument
(
const
FloatA
*
p_a_grid_
,
Argument
(
const
FloatA
*
p_a_grid_
,
...
@@ -151,7 +151,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -151,7 +151,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
MPadded_
,
index_t
MPadded_
,
index_t
NPadded_
,
index_t
NPadded_
,
index_t
KPadded_
,
index_t
KPadded_
,
index_t
K0_
,
index_t
K0
Padded
_
,
index_t
k_batch_
)
index_t
k_batch_
)
:
p_a_grid
(
p_a_grid_
),
:
p_a_grid
(
p_a_grid_
),
p_b_grid
(
p_b_grid_
),
p_b_grid
(
p_b_grid_
),
...
@@ -165,7 +165,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -165,7 +165,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
MPadded
(
MPadded_
),
MPadded
(
MPadded_
),
NPadded
(
NPadded_
),
NPadded
(
NPadded_
),
KPadded
(
KPadded_
),
KPadded
(
KPadded_
),
K0
(
K0
_
),
K0
Padded
(
K0Padded
_
),
k_batch
(
k_batch_
)
k_batch
(
k_batch_
)
{
{
}
}
...
@@ -182,7 +182,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -182,7 +182,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<<
"MP:"
<<
MPadded
<<
", "
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"K0:"
<<
K0
<<
", "
<<
"K0
Padded
:"
<<
K0
Padded
<<
", "
<<
"KB:"
<<
k_batch
<<
"}"
<<
std
::
endl
;
<<
"KB:"
<<
k_batch
<<
"}"
<<
std
::
endl
;
}
}
};
};
...
@@ -205,7 +205,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -205,7 +205,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
}
__host__
__device__
static
auto
CalculateK0
(
index_t
K
,
index_t
K_Batch
=
1
)
__host__
__device__
static
auto
CalculateK0
Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
{
// k_batch * k0 * k0_per_block * k1
// k_batch * k0 * k0_per_block * k1
auto
K_t
=
K_Batch
*
K0PerBlock
*
K1
;
auto
K_t
=
K_Batch
*
K0PerBlock
*
K1
;
...
@@ -214,8 +214,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -214,8 +214,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
{
auto
K0
=
CalculateK0
(
K
,
K_Batch
);
auto
K0
Padded
=
CalculateK0
Padded
(
K
,
K_Batch
);
return
K_Batch
*
K0
*
K1
;
return
K_Batch
*
K0
Padded
*
K1
;
}
}
__host__
__device__
static
auto
MakeAGridDescriptor_KBatch_K0_M_K1
(
index_t
M
,
__host__
__device__
static
auto
MakeAGridDescriptor_KBatch_K0_M_K1
(
index_t
M
,
...
@@ -223,7 +223,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -223,7 +223,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
K
,
index_t
K
,
index_t
StrideA
,
index_t
StrideA
,
index_t
KBatch
,
index_t
KBatch
,
index_t
K0
,
index_t
K0
Padded
,
index_t
KPad
)
index_t
KPad
)
{
{
const
auto
a_grid_desc_m_k
=
[
&
]()
{
const
auto
a_grid_desc_m_k
=
[
&
]()
{
...
@@ -237,21 +237,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -237,21 +237,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
}
}();
}();
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
{
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
@@ -259,8 +271,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -259,8 +271,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
else
else
{
{
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
a_grid_desc_m_k
pad
,
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
Padded
,
K1
)),
make_pass_through_transform
(
M
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
@@ -272,7 +284,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -272,7 +284,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
N
,
index_t
N
,
index_t
StrideB
,
index_t
StrideB
,
index_t
KBatch
,
index_t
KBatch
,
index_t
K0
,
index_t
K0
Padded
,
index_t
KPad
)
index_t
KPad
)
{
{
const
auto
b_grid_desc_k_n
=
[
&
]()
{
const
auto
b_grid_desc_k_n
=
[
&
]()
{
...
@@ -286,21 +298,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -286,21 +298,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
}
}();
}();
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
{
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
@@ -308,8 +332,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -308,8 +332,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
else
else
{
{
return
transform_tensor_descriptor
(
return
transform_tensor_descriptor
(
b_grid_desc_k
pad
_n
,
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
Padded
,
K1
)),
make_pass_through_transform
(
N
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
@@ -398,6 +422,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -398,6 +422,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
return
false
;
return
false
;
}
}
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
...
@@ -410,6 +435,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -410,6 +435,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
k_batch
*
K0PerBlock
*
K1
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
#endif // DEBUG_LOG
return
false
;
return
false
;
}
}
...
@@ -478,11 +522,11 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -478,11 +522,11 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if
(
karg
.
N
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
if
(
karg
.
N
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
{
{
#if DEBUG_LOG
#if DEBUG_LOG
std
::
cout
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
<<
") value is not a multiple of
CBlockTransferScalarPerVector_NWaveNPerXDL ("
"
CBlockTransferScalarPerVector_NWaveNPerXDL ("
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
#endif // DEBUG_LOG
return
false
;
return
false
;
...
@@ -493,25 +537,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -493,25 +537,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if
(
karg
.
M
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
if
(
karg
.
M
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
{
{
#if DEBUG_LOG
#if DEBUG_LOG
std
::
cout
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
<<
") value is not a multiple of
CBlockTransferScalarPerVector_NWaveNPerXDL ("
"
CBlockTransferScalarPerVector_NWaveNPerXDL ("
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
#endif // DEBUG_LOG
return
false
;
return
false
;
}
}
}
}
const
auto
num_k_loop
=
karg
.
K0
/
K0PerBlock
;
const
auto
num_k_loop
=
karg
.
K0
Padded
/
K0PerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
{
#if DEBUG_LOG
#if DEBUG_LOG
std
::
cout
<<
"The number of k loops ("
<<
num_k_loop
std
::
cout
<<
"The number of k loops ("
<<
num_k_loop
<<
") value is not supported by GridwiseGemm Pipeline."
<<
") value is not supported by GridwiseGemm Pipeline."
<<
" K0: "
<<
karg
.
K0
<<
", K0PerBlock: "
<<
K0PerBlock
<<
" "
<<
__FILE__
<<
" K0
Padded
: "
<<
karg
.
K0
Padded
<<
", K0PerBlock: "
<<
K0PerBlock
<<
" "
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
#endif // DEBUG_LOG
return
false
;
return
false
;
}
}
...
@@ -521,14 +565,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -521,14 +565,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__
__device__
static
auto
GetKPad
(
index_t
K
,
index_t
KBatch
)
__host__
__device__
static
auto
GetKPad
(
index_t
K
,
index_t
KBatch
)
{
{
const
index_t
K0
=
math
::
integer_divide_ceil
(
K
,
K1
*
K0PerBlock
*
KBatch
)
*
K0PerBlock
;
const
index_t
K0Padded
=
const
index_t
KPad
=
KBatch
*
K0
*
K1
;
math
::
integer_divide_ceil
(
K
,
K1
*
K0PerBlock
*
KBatch
)
*
K0PerBlock
;
const
index_t
KPad
=
KBatch
*
K0Padded
*
K1
;
return
KPad
;
return
KPad
;
}
}
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
)
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
Padded
)
{
{
const
index_t
num_loop
=
K0
/
K0PerBlock
;
const
index_t
num_loop
=
K0
Padded
/
K0PerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
}
...
@@ -595,9 +640,9 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
...
@@ -595,9 +640,9 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
const
FloatB
*
p_b_grid
=
karg
.
p_b_grid
;
const
FloatB
*
p_b_grid
=
karg
.
p_b_grid
;
FloatC
*
p_c_grid
=
karg
.
p_c_grid
;
FloatC
*
p_c_grid
=
karg
.
p_c_grid
;
const
auto
a_b_k0_m_k1_grid_desc
=
MakeAGridDescriptor_KBatch_K0_M_K1
(
const
auto
a_b_k0_m_k1_grid_desc
=
MakeAGridDescriptor_KBatch_K0_M_K1
(
karg
.
M
,
karg
.
MPadded
,
karg
.
K
,
karg
.
StrideA
,
karg
.
k_batch
,
karg
.
K0
,
karg
.
KPadded
);
karg
.
M
,
karg
.
MPadded
,
karg
.
K
,
karg
.
StrideA
,
karg
.
k_batch
,
karg
.
K0
Padded
,
karg
.
KPadded
);
const
auto
b_b_k0_n_k1_grid_desc
=
MakeBGridDescriptor_KBatch_K0_N_K1
(
const
auto
b_b_k0_n_k1_grid_desc
=
MakeBGridDescriptor_KBatch_K0_N_K1
(
karg
.
K
,
karg
.
NPadded
,
karg
.
N
,
karg
.
StrideB
,
karg
.
k_batch
,
karg
.
K0
,
karg
.
KPadded
);
karg
.
K
,
karg
.
NPadded
,
karg
.
N
,
karg
.
StrideB
,
karg
.
k_batch
,
karg
.
K0
Padded
,
karg
.
KPadded
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
karg
.
M
,
karg
.
N
,
karg
.
StrideC
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
karg
.
M
,
karg
.
N
,
karg
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
...
...
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
View file @
cb30a0c0
...
@@ -29,6 +29,8 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
...
@@ -29,6 +29,8 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
MNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
...
@@ -107,6 +109,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
...
@@ -107,6 +109,9 @@ void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
GemmDefault
>
{});
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
GemmDefault
>
{});
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
MNPadding
>
{});
add_device_operation_instances
(
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
MNKPadding
>
{});
instances
,
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
<
MNKPadding
>
{});
}
}
...
...
library/src/tensor_operation_instance/gpu/gemm_splitk/device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
View file @
cb30a0c0
This diff is collapsed.
Click to expand it.
profiler/src/CMakeLists.txt
View file @
cb30a0c0
...
@@ -3,51 +3,51 @@ set(PROFILER_SOURCES
...
@@ -3,51 +3,51 @@ set(PROFILER_SOURCES
profiler.cpp
profiler.cpp
profile_gemm.cpp
profile_gemm.cpp
profile_gemm_splitk.cpp
profile_gemm_splitk.cpp
profile_gemm_bias_add_reduce.cpp
#
profile_gemm_bias_add_reduce.cpp
profile_gemm_add_multiply.cpp
#
profile_gemm_add_multiply.cpp
profile_gemm_multiply_add.cpp
#
profile_gemm_multiply_add.cpp
profile_gemm_reduce.cpp
#
profile_gemm_reduce.cpp
profile_batched_gemm.cpp
#
profile_batched_gemm.cpp
profile_batched_gemm_reduce.cpp
#
profile_batched_gemm_reduce.cpp
profile_conv_fwd.cpp
#
profile_conv_fwd.cpp
profile_conv_fwd_bias_relu.cpp
#
profile_conv_fwd_bias_relu.cpp
profile_conv_fwd_bias_relu_add.cpp
#
profile_conv_fwd_bias_relu_add.cpp
profile_conv_bwd_data.cpp
#
profile_conv_bwd_data.cpp
profile_grouped_conv_fwd.cpp
#
profile_grouped_conv_fwd.cpp
profile_grouped_conv_bwd_weight.cpp
#
profile_grouped_conv_bwd_weight.cpp
profile_reduce.cpp
#
profile_reduce.cpp
profile_groupnorm.cpp
#
profile_groupnorm.cpp
profile_layernorm.cpp
#
profile_layernorm.cpp
profile_max_pool3d_fwd.cpp
#
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
#
profile_avg_pool3d_bwd.cpp
profile_max_pool3d_bwd.cpp
#
profile_max_pool3d_bwd.cpp
profile_softmax.cpp
#
profile_softmax.cpp
profile_batchnorm_fwd.cpp
#
profile_batchnorm_fwd.cpp
profile_batchnorm_bwd.cpp
#
profile_batchnorm_bwd.cpp
profile_batchnorm_infer.cpp
#
profile_batchnorm_infer.cpp
profile_grouped_conv_bwd_data.cpp
#
profile_grouped_conv_bwd_data.cpp
profile_conv_tensor_rearrange.cpp
#
profile_conv_tensor_rearrange.cpp
)
)
if
(
DL_KERNELS
)
#
if(DL_KERNELS)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp
)
#
list(APPEND PROFILER_SOURCES profile_batched_gemm_multi_d.cpp)
endif
()
#
endif()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
#
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp
)
#
list(APPEND PROFILER_SOURCES profile_batched_gemm_gemm.cpp)
list
(
APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp
)
#
list(APPEND PROFILER_SOURCES profile_gemm_fastgelu.cpp)
list
(
APPEND PROFILER_SOURCES profile_gemm_streamk.cpp
)
#
list(APPEND PROFILER_SOURCES profile_gemm_streamk.cpp)
list
(
APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp
)
#
list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp
)
#
list(APPEND PROFILER_SOURCES profile_gemm_add_fastgelu.cpp)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp
)
#
list(APPEND PROFILER_SOURCES profile_gemm_add_add_fastgelu.cpp)
list
(
APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp
)
#
list(APPEND PROFILER_SOURCES profile_gemm_add_relu_add_layernorm.cpp)
list
(
APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp
)
#
list(APPEND PROFILER_SOURCES profile_batched_gemm_add_relu_gemm_add.cpp)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm.cpp
)
#
list(APPEND PROFILER_SOURCES profile_grouped_gemm.cpp)
list
(
APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp
)
#
list(APPEND PROFILER_SOURCES profile_grouped_gemm_fastgelu.cpp)
endif
()
#
endif()
if
(
DTYPES MATCHES
"fp32"
OR DTYPES MATCHES
"fp64"
OR NOT DEFINED DTYPES
)
#
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
list
(
APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp
)
#
list(APPEND PROFILER_SOURCES profile_contraction_bilinear.cpp)
list
(
APPEND PROFILER_SOURCES profile_contraction_scale.cpp
)
#
list(APPEND PROFILER_SOURCES profile_contraction_scale.cpp)
endif
()
#
endif()
set
(
PROFILER_EXECUTABLE ckProfiler
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
@@ -57,57 +57,57 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
...
@@ -57,57 +57,57 @@ target_compile_options(${PROFILER_EXECUTABLE} PRIVATE -Wno-global-constructors)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE utility
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE utility
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_splitk_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_multiply_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_multiply_add_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_multiply_add_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_reduce_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bias_add_reduce_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_reduce_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_fwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_fwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_fwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv1d_bwd_data_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_bwd_data_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv3d_bwd_data_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv1d_bwd_weight_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_weight_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_weight_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_bias_relu_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_conv2d_fwd_bias_relu_add_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_normalization_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_softmax_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_reduce_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batchnorm_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool3d_fwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_pool3d_fwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_avg_pool3d_bwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_avg_pool3d_bwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_max_pool_bwd_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_max_pool_bwd_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_data_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv3d_bwd_data_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv3d_bwd_data_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_image_to_column_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_image_to_column_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_column_to_image_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_column_to_image_instance)
if
(
DTYPES MATCHES
"fp32"
OR DTYPES MATCHES
"fp64"
OR NOT DEFINED DTYPES
)
#
if(DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_bilinear_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_scale_instance)
endif
()
#
endif()
if
(
DL_KERNELS
)
#
if(DL_KERNELS)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_multi_d_instance)
endif
()
#
endif()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
#
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_fastgelu_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_relu_add_layernorm_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_bilinear_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_add_add_fastgelu_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_streamk_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_streamk_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_gemm_fastgelu_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_gemm_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_add_relu_gemm_add_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_instance)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_gemm_fastgelu_instance
)
#
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_gemm_fastgelu_instance)
endif
()
#
endif()
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
script/cmake-ck-dev.sh
View file @
cb30a0c0
...
@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
...
@@ -8,8 +8,7 @@ MY_PROJECT_SOURCE=$1
cmake
\
cmake
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_CXX_FLAGS
=
"-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker
\
-D
CMAKE_CXX_FLAGS
=
"-std=c++17 -O3 -ftemplate-backtrace-limit=0 -fPIE -Wno-gnu-line-marker"
\
-save-temps=
$PWD
"
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
BUILD_DEV
=
ON
\
-D
BUILD_DEV
=
ON
\
-D
GPU_TARGETS
=
"gfx908;gfx90a;gfx940"
\
-D
GPU_TARGETS
=
"gfx908;gfx90a;gfx940"
\
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment