Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
cab8f2e5
Commit
cab8f2e5
authored
Mar 14, 2022
by
Jing Zhang
Browse files
clean
parents
c20aabc3
9a17e7fb
Changes
86
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
788 additions
and
730 deletions
+788
-730
example/01_gemm/gemm_xdl_int8.cpp
example/01_gemm/gemm_xdl_int8.cpp
+6
-10
example/12_reduce/README.md
example/12_reduce/README.md
+60
-0
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+11
-38
example/13_pool2d_fwd/README.md
example/13_pool2d_fwd/README.md
+14
-15
example/14_gemm_xdl_requant_relu_requant/CMakeLists.txt
example/14_gemm_xdl_requant_relu_requant/CMakeLists.txt
+1
-0
example/14_gemm_xdl_requant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
...quant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
+232
-0
example/14_grouped_gemm/CMakeLists.txt
example/14_grouped_gemm/CMakeLists.txt
+0
-1
example/14_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/14_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+0
-219
example/CMakeLists.txt
example/CMakeLists.txt
+2
-1
include/ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp
...sor_operation/gpu/block/reduction_functions_blockwise.hpp
+56
-71
include/ck/tensor_operation/gpu/device/device_reduce.hpp
include/ck/tensor_operation/gpu/device/device_reduce.hpp
+3
-2
include/ck/tensor_operation/gpu/device/device_reduce_blockwise.hpp
...k/tensor_operation/gpu/device/device_reduce_blockwise.hpp
+25
-16
include/ck/tensor_operation/gpu/device/device_reduce_blockwise_second_call.hpp
...ration/gpu/device/device_reduce_blockwise_second_call.hpp
+19
-12
include/ck/tensor_operation/gpu/device/device_reduce_common.hpp
...e/ck/tensor_operation/gpu/device/device_reduce_common.hpp
+40
-17
include/ck/tensor_operation/gpu/device/device_reduce_multiblock_atomic_add.hpp
...ration/gpu/device/device_reduce_multiblock_atomic_add.hpp
+24
-16
include/ck/tensor_operation/gpu/device/device_reduce_multiblock_partial_reduce.hpp
...on/gpu/device/device_reduce_multiblock_partial_reduce.hpp
+28
-21
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
.../tensor_operation/gpu/device/device_reduce_threadwise.hpp
+25
-15
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_blockwise.hpp
...or_operation/gpu/grid/gridwise_2d_reduction_blockwise.hpp
+129
-154
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock_atomic_add.hpp
.../gpu/grid/gridwise_2d_reduction_multiblock_atomic_add.hpp
+42
-38
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock_partial_reduce.hpp
.../grid/gridwise_2d_reduction_multiblock_partial_reduce.hpp
+71
-84
No files found.
example/01_gemm/gemm_xdl_int8.cpp
View file @
cab8f2e5
...
...
@@ -25,12 +25,11 @@ using F32 = float;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
RequantReluRequant
=
ck
::
tensor_operation
::
element_wise
::
RequantReluRequant
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
CDataType
=
int
8
_t
;
using
CDataType
=
int
32
_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
...
...
@@ -50,7 +49,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle
CLayout
,
// CLayout
PassThrough
,
// AElementwiseOperation
PassThrough
,
// BElementwiseOperation
RequantReluRequant
,
// CElementwiseOperation
PassThrough
,
// CElementwiseOperation
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
...
...
@@ -78,11 +77,11 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
4
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
RequantReluRequant
>
;
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -99,9 +98,6 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
float
scale_gemm
=
0.03
;
float
scale_relu
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
...
...
@@ -175,7 +171,7 @@ int main(int argc, char* argv[])
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
RequantReluRequant
{
scale_gemm
,
scale_relu
};
auto
c_element_op
=
PassThrough
{
};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
...
...
example/12_reduce/README.md
0 → 100644
View file @
cab8f2e5
# Instructions for ```reduce_blockwise``` Example
## Docker script
```
bash
docker run
\
-it
\
--rm
\
--privileged
\
--group-add
sudo
\
-w
/root/workspace
\
-v
${
PATH_TO_LOCAL_WORKSPACE
}
:/root/workspace
\
rocm/tensorflow:rocm4.3.1-tf2.6-dev
\
/bin/bash
```
## Build ```reduce_blockwise```
```
bash
mkdir
build
&&
cd
build
```
```
bash
# Need to specify target ID, example below is gfx908
cmake
\
-D
BUILD_DEV
=
OFF
\
-D
CMAKE_BUILD_TYPE
=
Release
\
-D
CMAKE_CXX_FLAGS
=
"-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "
\
-D
CMAKE_CXX_COMPILER
=
/opt/rocm/bin/hipcc
\
-D
CMAKE_PREFIX_PATH
=
/opt/rocm
\
..
```
```
bash
make
-j
reduce_blockwise
```
## Run ```reduce_blockwise```
```
bash
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: run kernel # of times (>1)
./bin/reduce_blockwise
-D
16,64,32,960
-v
1 1 10
```
Result
```
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 3 times...
Perf: 0.23536 ms, 267.32 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
error: 0
max_diff: 0, 529, 529
root@dc-smc-18:/data/composable_kernel/Build3# bin/reduce_blockwise -D 16,64,32,960 -v 1 1 10
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 10 times...
Perf: 0.23392 ms, 268.966 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
error: 0
max_diff: 0, 528, 528
```
example/12_reduce/reduce_blockwise.cpp
View file @
cab8f2e5
...
...
@@ -14,6 +14,7 @@
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
#include "host_generic_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
...
...
@@ -28,8 +29,8 @@ using kInDataType = ck::half_t;
using
kOutDataType
=
ck
::
half_t
;
using
kAccDataType
=
float
;
constexpr
int
Rank
=
4
;
using
ReduceDims_
=
ck
::
Sequence
<
0
,
1
,
2
>
;
constexpr
int
Rank
=
4
;
constexpr
int
NumReduceDim
=
3
;
constexpr
ReduceTensorOp_t
ReduceOpId
=
ReduceTensorOp_t
::
NORM2
;
constexpr
NanPropagation_t
NanOpt
=
NanPropagation_t
::
PROPAGATE_NAN
;
...
...
@@ -46,7 +47,7 @@ using DeviceReduceInstance = DeviceReduceBlockWise<kInDataType,
kAccDataType
,
kOutDataType
,
Rank
,
ReduceDim
s_
,
Num
ReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
...
...
@@ -192,39 +193,13 @@ class SimpleAppArgs
};
};
template
<
int
Rank
,
typename
ReduceDims
>
static
std
::
vector
<
int
>
get_reduce_dims
()
{
std
::
vector
<
int
>
resDims
;
static_for
<
0
,
ReduceDims
::
Size
(),
1
>
{}([
&
](
auto
i
)
{
resDims
.
push_back
(
ReduceDims
::
At
(
i
));
});
return
(
resDims
);
};
template
<
int
Rank
,
typename
ReduceDims
>
static
std
::
vector
<
int
>
get_invariant_dims
()
{
std
::
vector
<
int
>
resDims
;
unsigned
int
incFlag
=
0
;
static_for
<
0
,
ReduceDims
::
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
incFlag
=
incFlag
|
(
0x1
<<
ReduceDims
::
At
(
i
));
});
for
(
int
dim
=
0
;
dim
<
Rank
;
dim
++
)
{
if
(
incFlag
&
(
0x1
<<
dim
))
continue
;
resDims
.
push_back
(
dim
);
};
return
(
resDims
);
};
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
::
host_reduce
;
const
std
::
vector
<
int
>
reduceDims
{
0
,
1
,
2
};
const
std
::
vector
<
int
>
invariantDims
{
3
};
SimpleAppArgs
args
;
if
(
args
.
processArgs
(
argc
,
argv
)
<
0
)
...
...
@@ -260,15 +235,12 @@ int main(int argc, char* argv[])
Tensor
<
InDataType
>
in
(
args
.
inLengths
);
const
std
::
vector
<
int
>
InvariantDims
=
get_invariant_dims
<
Rank
,
ReduceDims_
>
();
const
std
::
vector
<
int
>
ReduceDims
=
get_reduce_dims
<
Rank
,
ReduceDims_
>
();
std
::
vector
<
size_t
>
outLengths
;
if
(
I
nvariantDims
.
empty
())
if
(
i
nvariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
I
nvariantDims
)
for
(
auto
dim
:
i
nvariantDims
)
outLengths
.
push_back
(
args
.
inLengths
[
dim
]);
Tensor
<
OutDataType
>
out_ref
(
outLengths
);
...
...
@@ -328,7 +300,7 @@ int main(int argc, char* argv[])
if
(
args
.
do_verification
)
{
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOpId
,
PropagateNan
,
NeedIndices
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
I
nvariantDims
,
R
educeDims
);
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
i
nvariantDims
,
r
educeDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
());
...
...
@@ -350,6 +322,7 @@ int main(int argc, char* argv[])
i_inStrides
,
i_outLengths
,
i_outStrides
,
reduceDims
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
...
...
example/1
4_grouped_gemm
/README.md
→
example/1
3_pool2d_fwd
/README.md
View file @
cab8f2e5
# Instructions for ```
gemm_xdl
``` Example
# Instructions for ```
pool2d_fwd
``` Example
## Docker script
```
bash
...
...
@@ -13,7 +13,7 @@ rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```
gemm_xdl
```
## Build ```
pool2d_fwd
```
```
bash
mkdir
build
&&
cd
build
```
...
...
@@ -30,27 +30,26 @@ cmake \
```
```
bash
make
-j
gemm_xdl
make
-j
pool2d_fwd
```
## Run ```
gemm_xdl
```
## Run ```
pool2d_fwd
```
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
./example/gemm_xdl 0 1 5
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./example/pool2d_fwd 1 1 10
```
Result
(MI100 @ 1087Mhz, 133.5TFlops peak FP16)
Result
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up
Start running 5 times...
Perf: 1.19685 ms, 107.657 TFlops, 78.8501 GB/s
Start running 10 times...
Perf: 0.415453 ms, 1.37996 TFlops, 749.726 GB/s
error: 0
max_diff: 0, 1, 1
```
example/14_gemm_xdl_requant_relu_requant/CMakeLists.txt
0 → 100644
View file @
cab8f2e5
add_example_executable
(
example_gemm_xdl_requant_relu_requant_int8 gemm_xdl_requant_relu_requant_int8.cpp
)
\ No newline at end of file
example/14_gemm_xdl_requant_relu_requant/gemm_xdl_requant_relu_requant_int8.cpp
0 → 100644
View file @
cab8f2e5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
RequantReluRequant
=
ck
::
tensor_operation
::
element_wise
::
RequantReluRequant
;
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
CDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
ShuffleDataType
=
int32_t
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle
<
ADataType
,
// ADataType
BDataType
,
// BDataType
CDataType
,
// CDataType
AccDataType
,
// AccDataType
ShuffleDataType
,
// ShuffleDataType
ALayout
,
// ALayout
BLayout
,
// BLayout
CLayout
,
// CLayout
PassThrough
,
// AElementwiseOperation
PassThrough
,
// BElementwiseOperation
RequantReluRequant
,
// CElementwiseOperation
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
RequantReluRequant
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
float
scale_gemm
=
0.03
;
float
scale_relu
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
RequantReluRequant
{
scale_gemm
,
scale_relu
};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
check_error
(
c_m_n_host_result
,
c_m_n_device_result
);
}
return
0
;
}
example/14_grouped_gemm/CMakeLists.txt
deleted
100644 → 0
View file @
c20aabc3
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
example/14_grouped_gemm/grouped_gemm_xdl_fp16.cpp
deleted
100644 → 0
View file @
c20aabc3
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_grouped_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// static constexpr auto GemmMNPadding =
// ck::tensor_operation::device::GemmSpecialization_t::MNPadding;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer| Num|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar| Prefetch|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector| |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
F16
,
F16
,
F16
,
F32
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
exit
(
0
);
}
int
group_count
=
4
;
// GEMM shape
std
::
vector
<
ck
::
GemmShape
>
gemm_shapes
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
gemm_shapes
.
push_back
({
M
,
N
,
K
,
K
,
K
,
N
,
nullptr
,
nullptr
,
nullptr
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
CDataType
>>
c_device_tensors
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
c_tensors_device
;
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
StrideA
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
K
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideB
,
BLayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
CDataType
>
(
f_host_tensor_descriptor
(
gemm_shapes
[
i
].
M
,
gemm_shapes
[
i
].
N
,
gemm_shapes
[
i
].
StrideC
,
CLayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_shapes
[
i
].
M
*
gemm_shapes
[
i
].
K
*
gemm_shapes
[
i
].
N
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
CDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
}
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
a_tensors_device
.
push_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()));
b_tensors_device
.
push_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()));
c_tensors_device
.
push_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
CDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
gemm_shapes
[
i
].
p_a
=
a_tensors_device
[
i
]
->
GetDeviceBuffer
();
gemm_shapes
[
i
].
p_b
=
b_tensors_device
[
i
]
->
GetDeviceBuffer
();
gemm_shapes
[
i
].
p_c
=
c_tensors_device
[
i
]
->
GetDeviceBuffer
();
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
gemm_shapes
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
for
(
int
i
=
0
;
i
<
gemm_shapes
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
check_error
(
c_host_tensors
[
i
],
c_device_tensors
[
i
]);
}
}
return
0
;
}
example/CMakeLists.txt
View file @
cab8f2e5
...
...
@@ -38,4 +38,5 @@ add_subdirectory(10_conv2d_bwd_data)
add_subdirectory
(
11_conv2d_bwd_wgt
)
add_subdirectory
(
12_reduce
)
add_subdirectory
(
13_pool2d_fwd
)
add_subdirectory
(
14_grouped_gemm
)
add_subdirectory
(
14_gemm_xdl_requant_relu_requant
)
add_subdirectory
(
15_grouped_gemm
)
include/ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp
View file @
cab8f2e5
...
...
@@ -32,57 +32,53 @@
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "cluster_descriptor.hpp"
namespace
ck
{
template
<
typename
Buffer1dDescType
,
typename
AccDataType
,
template
<
typename
AccDataType
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
bool
ReorderThreadClusters
,
typename
ThreadClusterLengths_M_K
,
typename
ThreadClusterArrangeOrder
,
typename
OpReduce
,
bool
PropagateNan
>
struct
PartitionedBlockwiseReduction
On1dBuffer
struct
PartitionedBlockwiseReduction
{
static
constexpr
auto
buffer_1d_desc
=
Buffer1dDescType
{};
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
static_assert
(
BlockSize
==
ThreadClusterLengths_M_K
::
At
(
0
)
*
ThreadClusterLengths_M_K
::
At
(
1
),
"The product of cluster lengths should be same as BlockSize!"
);
static_assert
(
KThreadClusterSize
>
1
,
"Parallel reduction need work on at least two elements"
);
static_assert
(
buffer_1d_desc
.
GetElementSize
()
==
BlockSize
,
"The buffer size should be the same as BlockSize!"
);
static
constexpr
auto
BufferLength_M
=
ThreadClusterLengths_M_K
::
At
(
0
);
static
constexpr
auto
BufferLength_K
=
ThreadClusterLengths_M_K
::
At
(
1
);
static_assert
(
BufferLength_K
>
1
,
"Parallel reduction need work on at least two elements"
);
static
constexpr
auto
block_buf_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
BufferLength_M
>
{},
Number
<
BufferLength_K
>
{}));
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
Accumulation
=
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
OpReduce
,
AccDataType
>
;
template
<
typename
BufferType
>
__device__
static
void
Reduce
(
BufferType
&
block_buffer
,
AccDataType
&
accuData
,
index_t
thread_m_cluster_id
,
index_t
thread_k_cluster_id
)
__device__
static
void
Reduce
(
BufferType
&
block_buffer
,
AccDataType
&
accuData
)
{
constexpr
auto
cluster_len_shift
=
get_shift
<
KThreadClusterSize
>
();
constexpr
auto
cluster_len_shift
=
get_shift
<
BufferLength_K
>
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
Number
<
0
>
{}];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
Number
<
1
>
{}];
static_for
<
0
,
cluster_len_shift
,
1
>
{}([
&
](
auto
I
)
{
constexpr
index_t
indOffset
=
1
<<
(
cluster_len_shift
-
1
-
I
());
if
(
thread_k_cluster_id
<
indOffset
)
{
// consider the thread clusters order, ensure the contiguous locations are accessed
// by contiguous Thread-ID
index_t
offset1
=
ReorderThreadClusters
?
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_k_cluster_id
*
MThreadClusterSize
+
thread_m_cluster_id
))
:
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
*
KThreadClusterSize
+
thread_k_cluster_id
));
index_t
offset2
=
ReorderThreadClusters
?
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
(
thread_k_cluster_id
+
indOffset
)
*
MThreadClusterSize
+
thread_m_cluster_id
))
:
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
*
KThreadClusterSize
+
(
thread_k_cluster_id
+
indOffset
)));
index_t
offset1
=
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
);
index_t
offset2
=
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
+
make_tuple
(
0
,
indOffset
));
AccDataType
opData1
=
type_convert
<
AccDataType
>
(
block_buffer
[
offset1
]);
AccDataType
opData2
=
type_convert
<
AccDataType
>
(
block_buffer
[
offset2
]);
...
...
@@ -93,34 +89,34 @@ struct PartitionedBlockwiseReductionOn1dBuffer
__syncthreads
();
});
index_t
offset
=
ReorderThreadClusters
?
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
))
:
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
*
KThreadClusterSize
));
index_t
offset
=
block_buf_desc_m_k
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
,
0
));
accuData
=
type_convert
<
AccDataType
>
(
block_buffer
[
offset
]);
};
};
template
<
typename
Buffer1dDescType
,
typename
AccDataType
,
template
<
typename
AccDataType
,
typename
IndexDataType
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
bool
ReorderThreadClusters
,
typename
ThreadClusterLengths_M_K
,
typename
ThreadClusterArrangeOrder
,
typename
OpReduce
,
bool
PropagateNan
>
struct
PartitionedBlockwiseReductionWithIndex
On1dBuffer
struct
PartitionedBlockwiseReductionWithIndex
{
static
constexpr
auto
buffer_1d_desc
=
Buffer1dDescType
{};
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
static_assert
(
BlockSize
==
ThreadClusterLengths_M_K
::
At
(
0
)
*
ThreadClusterLengths_M_K
::
At
(
1
),
"The product of cluster lengths should be same as BlockSize!"
);
static_assert
(
KThreadClusterSize
>
1
,
"Parallel reduction need work on at least two elements"
);
static_assert
(
buffer_1d_desc
.
GetElementSize
()
==
BlockSize
,
"The buffer size should be the same as BlockSize!"
);
static
constexpr
auto
BufferLength_M
=
ThreadClusterLengths_M_K
::
At
(
0
);
static
constexpr
auto
BufferLength_K
=
ThreadClusterLengths_M_K
::
At
(
1
);
static_assert
(
BufferLength_K
>
1
,
"Parallel reduction need work on at least two elements"
);
static
constexpr
auto
block_buf_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
BufferLength_M
>
{},
Number
<
BufferLength_K
>
{}));
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
Accumulation
=
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
OpReduce
,
AccDataType
,
IndexDataType
>
;
...
...
@@ -130,32 +126,24 @@ struct PartitionedBlockwiseReductionWithIndexOn1dBuffer
__device__
static
void
Reduce
(
BufferType
&
block_val_buffer
,
IdxBufferType
&
block_idx_buffer
,
AccDataType
&
accuData
,
IndexDataType
&
accuIndex
,
index_t
thread_m_cluster_id
,
index_t
thread_k_cluster_id
)
IndexDataType
&
accuIndex
)
{
constexpr
auto
cluster_len_shift
=
get_shift
<
KThreadClusterSize
>
();
constexpr
auto
cluster_len_shift
=
get_shift
<
BufferLength_K
>
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
Number
<
0
>
{}];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
Number
<
1
>
{}];
static_for
<
0
,
cluster_len_shift
,
1
>
{}([
&
](
auto
I
)
{
constexpr
index_t
indOffset
=
1
<<
I
();
if
(
thread_k_cluster_id
%
(
indOffset
*
2
)
==
0
)
{
// consider the thread clusters order, ensure the contiguous locations are accessed
// by contiguous Thread-ID
index_t
offset1
=
ReorderThreadClusters
?
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_k_cluster_id
*
MThreadClusterSize
+
thread_m_cluster_id
))
:
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
*
KThreadClusterSize
+
thread_k_cluster_id
));
index_t
offset2
=
ReorderThreadClusters
?
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
(
thread_k_cluster_id
+
indOffset
)
*
MThreadClusterSize
+
thread_m_cluster_id
))
:
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
*
KThreadClusterSize
+
(
thread_k_cluster_id
+
indOffset
)));
index_t
offset1
=
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
);
index_t
offset2
=
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
+
make_tuple
(
0
,
indOffset
));
AccDataType
opData1
=
type_convert
<
AccDataType
>
(
block_val_buffer
[
offset1
]);
AccDataType
opData2
=
type_convert
<
AccDataType
>
(
block_val_buffer
[
offset2
]);
...
...
@@ -170,10 +158,7 @@ struct PartitionedBlockwiseReductionWithIndexOn1dBuffer
__syncthreads
();
});
index_t
offset
=
ReorderThreadClusters
?
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
))
:
buffer_1d_desc
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
*
KThreadClusterSize
));
index_t
offset
=
block_buf_desc_m_k
.
CalculateOffset
(
make_tuple
(
thread_m_cluster_id
,
0
));
accuData
=
type_convert
<
AccDataType
>
(
block_val_buffer
[
offset
]);
accuIndex
=
block_idx_buffer
[
offset
];
...
...
include/ck/tensor_operation/gpu/device/device_reduce.hpp
View file @
cab8f2e5
...
...
@@ -36,14 +36,15 @@ struct DeviceReduce : public BaseOperator
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
void
*
workspace_dev
,
const
InElementwiseOperation
&
in
E
lementwise
O
p
,
const
AccElementwiseOperation
&
acc
E
lementwise
O
p
)
=
0
;
const
InElementwiseOperation
&
in
_e
lementwise
_o
p
,
const
AccElementwiseOperation
&
acc
_e
lementwise
_o
p
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
...
...
include/ck/tensor_operation/gpu/device/device_reduce_blockwise.hpp
View file @
cab8f2e5
...
...
@@ -15,8 +15,8 @@ namespace device {
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
int
Rank
,
typename
ReduceDim
s
,
in
dex_
t
Rank
,
index_t
Num
ReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
...
...
@@ -40,7 +40,12 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
static
constexpr
bool
BetaIsZero
=
NeedIndices
;
using
InvariantDims
=
decltype
(
get_invariant_dims
<
Rank
,
ReduceDims
>
());
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
using
InvariantDims
=
typename
conditional
<
NumInvariantDim
==
0
,
Sequence
<>
,
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
static
constexpr
index_t
srcDims
=
Rank
;
static
constexpr
index_t
dstDims
=
(
InvariantDims
::
Size
()
==
0
)
?
1
:
InvariantDims
::
Size
();
...
...
@@ -74,7 +79,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
}
else
{
const
auto
toR
educeDimLengths
=
const
auto
r
educeDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
...
...
@@ -82,7 +87,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
toR
educeDimLengths
)),
make_merge_transform
(
r
educeDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
...
...
@@ -136,6 +141,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
...
...
@@ -144,30 +150,31 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
)
:
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
}
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
(
void
)
workspace_dev
;
inLengths_
=
inLengths
;
inStrides_
=
inStrides
;
outLengths_
=
outLengths
;
outStrides_
=
outStrides
;
in_elementwise_op_
=
in_elementwise_op
;
acc_elementwise_op_
=
acc_elementwise_op
;
std
::
tie
(
inLengths_
,
inStrides_
)
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
inStrides
,
reduceDims
);
alpha_
=
static_cast
<
AccDataType
>
(
alpha
);
beta_
=
static_cast
<
OutDataType
>
(
beta
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
);
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
_
);
if
constexpr
(
InvariantDims
::
Size
()
==
0
)
invariant_lowest_length
=
1
;
else
invariant_lowest_length
=
inLengths
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
invariant_lowest_length
=
inLengths
_
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
_
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
;
...
...
@@ -305,6 +312,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
...
...
@@ -318,6 +326,7 @@ struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccEl
inStrides
,
outLengths
,
outStrides
,
reduceDims
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
...
...
include/ck/tensor_operation/gpu/device/device_reduce_blockwise_second_call.hpp
View file @
cab8f2e5
...
...
@@ -15,8 +15,8 @@ namespace device {
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
int
Rank
,
typename
ReduceDim
s
,
in
dex_
t
Rank
,
index_t
Num
ReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
...
...
@@ -45,7 +45,11 @@ struct DeviceReduceBlockWiseSecondCall
std
::
is_same
<
InDataType
,
AccDataType
>::
value
,
"InDataType and AccDataType should be the same to use DEviceReduceBlockWiseSecondCall!"
);
using
InvariantDims
=
decltype
(
get_invariant_dims
<
Rank
,
ReduceDims
>
());
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
using
InvariantDims
=
typename
conditional
<
NumInvariantDim
==
0
,
Sequence
<>
,
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
>::
type
;
static
constexpr
index_t
dstDims
=
(
InvariantDims
::
Size
()
==
0
)
?
1
:
InvariantDims
::
Size
();
...
...
@@ -117,16 +121,16 @@ struct DeviceReduceBlockWiseSecondCall
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
)
:
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
}
:
inLengths_
(
inLengths
),
inStrides_
(
inStrides
),
outLengths_
(
outLengths
),
outStrides_
(
outStrides
),
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
in_elementwise_op_
(
in_elementwise_op
),
acc_elementwise_op_
(
acc_elementwise_op
)
{
inLengths_
=
inLengths
;
inStrides_
=
inStrides
;
outLengths_
=
outLengths
;
outStrides_
=
outStrides
;
in_elementwise_op_
=
in_elementwise_op
;
acc_elementwise_op_
=
acc_elementwise_op
;
alpha_
=
static_cast
<
AccDataType
>
(
alpha
);
beta_
=
static_cast
<
OutDataType
>
(
beta
);
...
...
@@ -268,6 +272,7 @@ struct DeviceReduceBlockWiseSecondCall
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
...
...
@@ -277,6 +282,8 @@ struct DeviceReduceBlockWiseSecondCall
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
)
override
{
(
void
)
reduceDims
;
return
std
::
make_unique
<
Argument
>
(
inLengths
,
inStrides
,
outLengths
,
...
...
include/ck/tensor_operation/gpu/device/device_reduce_common.hpp
View file @
cab8f2e5
...
...
@@ -2,6 +2,7 @@
#define DEVICE_REDUCE_COMMON_HPP
#include <vector>
#include <cassert>
#include "common_header.hpp"
#include "reduction_enums.hpp"
...
...
@@ -40,23 +41,6 @@ constexpr bool belong()
return
(
inside
);
};
template
<
int
Rank
,
typename
ReduceDims
,
int
start
=
0
>
constexpr
auto
get_invariant_dims
()
{
static_assert
(
Rank
<=
6
,
"bigger Rank size not supported!"
);
if
constexpr
(
start
>=
Rank
)
return
Sequence
<>
{};
else
{
if
constexpr
(
!
belong
<
start
,
ReduceDims
>
())
return
merge_sequences
(
Sequence
<
start
>
{},
get_invariant_dims
<
Rank
,
ReduceDims
,
start
+
1
>
());
else
return
get_invariant_dims
<
Rank
,
ReduceDims
,
start
+
1
>
();
};
};
// helper functions using variadic template arguments
template
<
index_t
...
Ns
>
static
auto
make_tuple_from_array_and_index_seq
(
const
std
::
vector
<
int
>&
lengths
,
Sequence
<
Ns
...
>
)
...
...
@@ -74,6 +58,45 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS
return
make_tuple_from_array_and_index_seq
(
lengths
,
index_seq
);
};
template
<
index_t
Rank
,
index_t
NumReduceDim
>
static
inline
std
::
pair
<
std
::
vector
<
int
>
,
std
::
vector
<
int
>>
shuffle_tensor_dimensions
(
const
std
::
vector
<
int
>&
dimLengths
,
const
std
::
vector
<
int
>&
dimStrides
,
const
std
::
vector
<
int
>&
reduceDims
)
{
std
::
vector
<
int
>
newDimLengths
;
std
::
vector
<
int
>
newDimStrides
;
assert
(
Rank
==
dimLengths
.
size
()
&&
Rank
==
dimStrides
.
size
()
&&
NumReduceDim
==
reduceDims
.
size
());
int
reduceFlag
=
0
;
// flag the bits for the reduceDims
for
(
int
i
=
0
;
i
<
NumReduceDim
;
i
++
)
{
reduceFlag
|=
1
<<
reduceDims
[
i
];
};
// collect invariant dimensions
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
==
0
)
{
newDimLengths
.
push_back
(
dimLengths
[
i
]);
newDimStrides
.
push_back
(
dimStrides
[
i
]);
};
// collect reduce dimensions
for
(
int
i
=
0
;
i
<
Rank
;
i
++
)
if
((
reduceFlag
&
(
1
<<
i
))
>
0
)
{
newDimLengths
.
push_back
(
dimLengths
[
i
]);
newDimStrides
.
push_back
(
dimStrides
[
i
]);
};
return
std
::
make_pair
(
newDimLengths
,
newDimStrides
);
};
}
// namespace device
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/device_reduce_multiblock_atomic_add.hpp
View file @
cab8f2e5
...
...
@@ -17,8 +17,8 @@ namespace device {
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
int
Rank
,
typename
ReduceDim
s
,
in
dex_
t
Rank
,
index_t
Num
ReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
...
...
@@ -41,7 +41,12 @@ struct DeviceReduceMultiBlockAtomicAdd
using
IndexDataType
=
int32_t
;
using
InvariantDims
=
decltype
(
get_invariant_dims
<
Rank
,
ReduceDims
>
());
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
using
InvariantDims
=
typename
conditional
<
NumInvariantDim
==
0
,
Sequence
<>
,
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
static
constexpr
index_t
srcDims
=
Rank
;
static
constexpr
index_t
dstDims
=
(
InvariantDims
::
Size
()
==
0
)
?
1
:
InvariantDims
::
Size
();
...
...
@@ -84,7 +89,7 @@ struct DeviceReduceMultiBlockAtomicAdd
}
else
{
const
auto
toR
educeDimLengths
=
const
auto
r
educeDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
...
...
@@ -92,7 +97,7 @@ struct DeviceReduceMultiBlockAtomicAdd
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
toR
educeDimLengths
)),
make_merge_transform
(
r
educeDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
...
...
@@ -147,6 +152,7 @@ struct DeviceReduceMultiBlockAtomicAdd
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
...
...
@@ -155,31 +161,31 @@ struct DeviceReduceMultiBlockAtomicAdd
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
)
:
in_dev_
{
in_dev
},
out_dev_
{
out_dev
}
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
(
void
)
out_indices_dev
;
(
void
)
workspace_dev
;
inLengths_
=
inLengths
;
inStrides_
=
inStrides
;
outLengths_
=
outLengths
;
outStrides_
=
outStrides
;
in_elementwise_op_
=
in_elementwise_op
;
acc_elementwise_op_
=
acc_elementwise_op
;
std
::
tie
(
inLengths_
,
inStrides_
)
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
inStrides
,
reduceDims
);
alpha_
=
static_cast
<
AccDataType
>
(
alpha
);
beta_
=
static_cast
<
OutDataType
>
(
beta
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
);
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
_
);
if
constexpr
(
InvariantDims
::
Size
()
==
0
)
invariant_lowest_length
=
1
;
else
invariant_lowest_length
=
inLengths
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
invariant_lowest_length
=
inLengths
_
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
_
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
int
iterations
=
1
;
while
(
true
)
...
...
@@ -369,6 +375,7 @@ struct DeviceReduceMultiBlockAtomicAdd
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
...
...
@@ -382,6 +389,7 @@ struct DeviceReduceMultiBlockAtomicAdd
inStrides
,
outLengths
,
outStrides
,
reduceDims
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
...
...
include/ck/tensor_operation/gpu/device/device_reduce_multiblock_partial_reduce.hpp
View file @
cab8f2e5
...
...
@@ -15,8 +15,8 @@ namespace device {
template
<
typename
InDataType
,
typename
AccDataType
,
typename
OutDataType
,
int
Rank
,
typename
ReduceDim
s
,
in
dex_
t
Rank
,
index_t
Num
ReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
AccElementwiseOperation
,
...
...
@@ -41,7 +41,12 @@ struct DeviceReduceMultiBlockPartialReduce
using
IndexDataType
=
int32_t
;
using
InvariantDims
=
decltype
(
get_invariant_dims
<
Rank
,
ReduceDims
>
());
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
using
InvariantDims
=
typename
conditional
<
NumInvariantDim
==
0
,
Sequence
<>
,
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
static
constexpr
index_t
srcDims
=
Rank
;
static
constexpr
index_t
dstDims
=
(
InvariantDims
::
Size
()
==
0
)
?
1
:
InvariantDims
::
Size
();
...
...
@@ -112,7 +117,7 @@ struct DeviceReduceMultiBlockPartialReduce
}
else
{
const
auto
toR
educeDimLengths
=
const
auto
r
educeDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
...
...
@@ -120,7 +125,7 @@ struct DeviceReduceMultiBlockPartialReduce
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
toR
educeDimLengths
)),
make_merge_transform
(
r
educeDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
...
...
@@ -161,10 +166,11 @@ struct DeviceReduceMultiBlockPartialReduce
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
index_t
>&
inLengths
,
const
std
::
vector
<
index_t
>&
inStrides
,
const
std
::
vector
<
index_t
>&
outLengths
,
const
std
::
vector
<
index_t
>&
outStrides
,
Argument
(
const
std
::
vector
<
int
>&
inLengths
,
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
...
...
@@ -173,31 +179,30 @@ struct DeviceReduceMultiBlockPartialReduce
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
AccElementwiseOperation
&
acc_elementwise_op
)
:
in_dev_
{
in_dev
},
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
workspace_dev_
{
workspace_dev
}
workspace_dev_
{
workspace_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
inLengths_
=
inLengths
;
inStrides_
=
inStrides
;
outLengths_
=
outLengths
;
outStrides_
=
outStrides
;
in_elementwise_op_
=
in_elementwise_op
;
acc_elementwise_op_
=
acc_elementwise_op
;
std
::
tie
(
inLengths_
,
inStrides_
)
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
inStrides
,
reduceDims
);
alpha_
=
static_cast
<
AccDataType
>
(
alpha
);
beta_
=
static_cast
<
OutDataType
>
(
beta
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
);
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
_
);
if
constexpr
(
InvariantDims
::
Size
()
==
0
)
invariant_lowest_length
=
1
;
else
invariant_lowest_length
=
inLengths
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
invariant_lowest_length
=
inLengths
_
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
_
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
int
iterations
=
1
;
while
(
true
)
...
...
@@ -370,6 +375,7 @@ struct DeviceReduceMultiBlockPartialReduce
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
...
...
@@ -383,6 +389,7 @@ struct DeviceReduceMultiBlockPartialReduce
inStrides
,
outLengths
,
outStrides
,
reduceDims
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
...
...
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
View file @
cab8f2e5
...
...
@@ -16,7 +16,7 @@ template <typename InDataType,
typename
AccDataType
,
typename
OutDataType
,
index_t
Rank
,
typename
ReduceDim
s
,
index_t
Num
ReduceDim
,
typename
ReduceOperation
,
typename
InElementwiseOperation
,
typename
OutElementwiseOperation
,
...
...
@@ -40,7 +40,12 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
static
constexpr
bool
BetaIsZero
=
NeedIndices
;
using
InvariantDims
=
decltype
(
get_invariant_dims
<
Rank
,
ReduceDims
>
());
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumReduceDim
;
using
InvariantDims
=
typename
conditional
<
NumInvariantDim
==
0
,
Sequence
<>
,
typename
arithmetic_sequence_gen
<
0
,
NumInvariantDim
,
1
>::
type
>::
type
;
using
ReduceDims
=
typename
arithmetic_sequence_gen
<
NumInvariantDim
,
Rank
,
1
>::
type
;
static
constexpr
index_t
srcDims
=
Rank
;
static
constexpr
index_t
dstDims
=
(
InvariantDims
::
Size
()
==
0
)
?
1
:
InvariantDims
::
Size
();
...
...
@@ -74,7 +79,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
}
else
{
const
auto
toR
educeDimLengths
=
const
auto
r
educeDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
ReduceDims
{});
const
auto
invariantDimLengths
=
make_tuple_from_array_and_index_seq
(
inLengths
,
InvariantDims
{});
...
...
@@ -82,7 +87,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
return
transform_tensor_descriptor
(
inDesc
,
make_tuple
(
make_merge_transform
(
invariantDimLengths
),
make_merge_transform
(
toR
educeDimLengths
)),
make_merge_transform
(
r
educeDimLengths
)),
make_tuple
(
InvariantDims
{},
ReduceDims
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
...
...
@@ -136,6 +141,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
InDataType
*
in_dev
,
...
...
@@ -144,30 +150,32 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
AccDataType
*
workspace_dev
,
const
InElementwiseOperation
&
in_elementwise_op
,
const
OutElementwiseOperation
&
acc_elementwise_op
)
:
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
}
:
outLengths_
{
outLengths
},
outStrides_
{
outStrides
},
in_dev_
{
in_dev
},
out_dev_
{
out_dev
},
out_indices_dev_
{
out_indices_dev
},
in_elementwise_op_
{
in_elementwise_op
},
acc_elementwise_op_
{
acc_elementwise_op
}
{
(
void
)
workspace_dev
;
inLengths_
=
inLengths
;
inStrides_
=
inStrides
;
outLengths_
=
outLengths
;
outStrides_
=
outStrides
;
in_elementwise_op_
=
in_elementwise_op
;
acc_elementwise_op_
=
acc_elementwise_op
;
std
::
tie
(
inLengths_
,
inStrides_
)
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
inLengths
,
inStrides
,
reduceDims
);
alpha_
=
static_cast
<
AccDataType
>
(
alpha
);
beta_
=
static_cast
<
OutDataType
>
(
beta
);
std
::
tie
(
invariant_total_length
,
reduce_total_length
)
=
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
);
get_2d_lengths
<
Rank
,
ReduceDims
>
(
inLengths
_
);
if
constexpr
(
InvariantDims
::
Size
()
==
0
)
invariant_lowest_length
=
1
;
else
invariant_lowest_length
=
inLengths
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
invariant_lowest_length
=
inLengths
_
[
InvariantDims
::
At
(
InvariantDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
reduce_lowest_length
=
inLengths
_
[
ReduceDims
::
At
(
ReduceDims
::
Size
()
-
1
)];
gridSize
=
math
::
integer_least_multiple
(
invariant_total_length
,
M_BlockTileSize
)
/
M_BlockTileSize
;
...
...
@@ -306,6 +314,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
const
std
::
vector
<
int
>&
inStrides
,
const
std
::
vector
<
int
>&
outLengths
,
const
std
::
vector
<
int
>&
outStrides
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
,
const
void
*
in_dev
,
...
...
@@ -319,6 +328,7 @@ struct DeviceReduceThreadWise : public DeviceReduce<InElementwiseOperation, OutE
inStrides
,
outLengths
,
outStrides
,
reduceDims
,
alpha
,
beta
,
static_cast
<
const
InDataType
*>
(
in_dev
),
...
...
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_blockwise.hpp
View file @
cab8f2e5
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock_atomic_add.hpp
View file @
cab8f2e5
...
...
@@ -86,22 +86,34 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
{
static
constexpr
bool
reorder_thread_cluster
=
(
InSrcVectorDim
==
0
);
static
constexpr
auto
buffer_1d_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
BlockSize
>
{}));
using
blockwise_reduce
=
PartitionedBlockwiseReductionOn1dBuffer
<
decltype
(
buffer_1d_desc
),
AccDataType
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
reorder_thread_cluster
,
ReduceOperation
,
PropagateNan
>
;
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
ThreadBufferDimAccessOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
// For laying out the threads to do reducing on LDS buffer, for LDS buffer, we always use the
// Dim_K as the fastest one
static
constexpr
auto
block_buf_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadClusterSize
>
{},
Number
<
KThreadClusterSize
>
{}));
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
template
<
typename
T
>
using
PassThroughOp
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
...
...
@@ -145,12 +157,12 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
const
index_t
block_global_id
=
get_block_1d_id
();
const
index_t
blkgroup_id
=
block_global_id
/
block_group_size
;
const
index_t
block_local_id
=
block_global_id
%
block_group_size
;
const
index_t
thread_m_cluster_id
=
reorder_thread_cluster
?
thread_local_id
%
MThreadClusterSize
:
((
thread_local_id
/
KThreadClusterSize
)
%
MThreadClusterSize
);
const
index_t
thread_k_cluster_id
=
reorder_thread_cluster
?
((
thread_local_id
/
MThreadClusterSize
)
%
KT
hread
C
luster
Size
)
:
thread_local_id
%
KT
hread
C
luster
Size
;
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
)
);
const
auto
thread_m_cluster_id
=
t
hread
_c
luster
_idx
[
I0
];
const
auto
thread_k_cluster_id
=
t
hread
_c
luster
_idx
[
I1
]
;
const
index_t
reduceSizePerBlock
=
K_BlockTileSize
*
num_k_block_tile_iteration
;
...
...
@@ -158,17 +170,16 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
typename
conditional
<
InSrcVectorDim
==
0
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
*
reduceSizePerBlock
+
...
...
@@ -212,21 +223,14 @@ struct GridwiseReduction_mk_to_m_multiblock_atomic_add
// consistent reduced result for that invariant dimension. due to the using of vector_load,
// each block/thread is involved into multiple invarirant dimensions.
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
reorder_thread_cluster
)
{
block_reduce_buf
(
thread_k_cluster_id
*
MThreadClusterSize
+
thread_m_cluster_id
)
=
accu_value_buf
[
I
];
}
else
block_reduce_buf
(
thread_m_cluster_id
*
KThreadClusterSize
+
thread_k_cluster_id
)
=
accu_value_buf
[
I
];
block_reduce_buf
(
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
))
=
accu_value_buf
[
I
];
accu_value_buf
(
I
)
=
zeroVal
;
__syncthreads
();
blockwise_reduce
::
Reduce
(
block_reduce_buf
,
accu_value_buf
(
I
),
thread_m_cluster_id
,
thread_k_cluster_id
);
BlockwiseReduce
::
Reduce
(
block_reduce_buf
,
accu_value_buf
(
I
));
});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
...
...
include/ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock_partial_reduce.hpp
View file @
cab8f2e5
...
...
@@ -30,8 +30,8 @@
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
#include "reduction_functions_blockwise.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "cluster_descriptor.hpp"
namespace
ck
{
...
...
@@ -103,13 +103,27 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
{
static
constexpr
bool
reorder_thread_cluster
=
(
InSrcVectorDim
==
0
);
static
constexpr
auto
buffer1dDesc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
BlockSize
>
{}));
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
ThreadBufferDimAccessOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
typename
conditional
<
reorder_thread_cluster
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
// For laying out the threads to do reducing on LDS buffer, for LDS buffer, we always use the
// Dim_K as the fastest one
static
constexpr
auto
block_buf_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadClusterSize
>
{},
Number
<
KThreadClusterSize
>
{}));
template
<
typename
T
>
using
PassThroughOp
=
tensor_operation
::
element_wise
::
UnaryIdentic
<
T
,
T
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
...
...
@@ -124,14 +138,12 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
AccDataType
*
const
__restrict__
p_ws_values_global
,
IndexDataType
*
const
__restrict__
p_ws_indices_global
)
{
using
BlockwiseReduce
=
PartitionedBlockwiseReductionOn1dBuffer
<
decltype
(
buffer1dDesc
),
AccDataType
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
reorder_thread_cluster
,
ReduceOperation
,
PropagateNan
>
;
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
AccDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
Accumulation
=
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
...
...
@@ -168,12 +180,12 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
const
index_t
block_global_id
=
get_block_1d_id
();
const
index_t
blkgroup_id
=
block_global_id
/
block_group_size
;
const
index_t
block_local_id
=
block_global_id
%
block_group_size
;
const
index_t
thread_m_cluster_id
=
reorder_thread_cluster
?
thread_local_id
%
MThreadClusterSize
:
((
thread_local_id
/
KThreadClusterSize
)
%
MThreadClusterSize
);
const
index_t
thread_k_cluster_id
=
reorder_thread_cluster
?
((
thread_local_id
/
MThreadClusterSize
)
%
KT
hread
C
luster
Size
)
:
thread_local_id
%
KT
hread
C
luster
Size
;
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
)
);
const
auto
thread_m_cluster_id
=
t
hread
_c
luster
_idx
[
I0
];
const
auto
thread_k_cluster_id
=
t
hread
_c
luster
_idx
[
I1
]
;
const
index_t
reduceSizePerBlock
=
K_BlockTileSize
*
num_k_block_tile_iteration
;
...
...
@@ -181,17 +193,16 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
typename
conditional
<
InSrcVectorDim
==
0
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
*
reduceSizePerBlock
+
...
...
@@ -233,21 +244,14 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
// Each block executes multiple parallel reductions on the LDS, and due to the using of
// vector_load, each block/thread is involved into multiple invarirant dimensions.
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
reorder_thread_cluster
)
{
block_reduce_buf
(
thread_k_cluster_id
*
MThreadClusterSize
+
thread_m_cluster_id
)
=
accu_value_buf
[
I
];
}
else
block_reduce_buf
(
thread_m_cluster_id
*
KThreadClusterSize
+
thread_k_cluster_id
)
=
accu_value_buf
[
I
];
block_reduce_buf
(
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
))
=
accu_value_buf
[
I
];
accu_value_buf
(
I
)
=
zeroVal
;
__syncthreads
();
BlockwiseReduce
::
Reduce
(
block_reduce_buf
,
accu_value_buf
(
I
),
thread_m_cluster_id
,
thread_k_cluster_id
);
BlockwiseReduce
::
Reduce
(
block_reduce_buf
,
accu_value_buf
(
I
));
});
if
(
thread_k_cluster_id
==
0
)
...
...
@@ -290,15 +294,13 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
IndexDataType
*
const
__restrict__
p_ws_indices_global
)
{
using
BlockwiseReduceWithIndex
=
PartitionedBlockwiseReductionWithIndexOn1dBuffer
<
decltype
(
buffer1dDesc
),
AccDataType
,
IndexDataType
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
reorder_thread_cluster
,
ReduceOperation
,
PropagateNan
>
;
PartitionedBlockwiseReductionWithIndex
<
AccDataType
,
IndexDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
ReduceOperation
,
PropagateNan
>
;
using
AccumulationWithIndex
=
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
...
...
@@ -346,12 +348,12 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
const
index_t
block_global_id
=
get_block_1d_id
();
const
index_t
blkgroup_id
=
block_global_id
/
block_group_size
;
const
index_t
block_local_id
=
block_global_id
%
block_group_size
;
const
index_t
thread_m_cluster_id
=
reorder_thread_cluster
?
thread_local_id
%
MThreadClusterSize
:
((
thread_local_id
/
KThreadClusterSize
)
%
MThreadClusterSize
);
const
index_t
thread_k_cluster_id
=
reorder_thread_cluster
?
((
thread_local_id
/
MThreadClusterSize
)
%
KT
hread
C
luster
Size
)
:
thread_local_id
%
KT
hread
C
luster
Size
;
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
)
);
const
auto
thread_m_cluster_id
=
t
hread
_c
luster
_idx
[
I0
];
const
auto
thread_k_cluster_id
=
t
hread
_c
luster
_idx
[
I1
]
;
const
index_t
reduceSizePerBlock
=
K_BlockTileSize
*
num_k_block_tile_iteration
;
...
...
@@ -359,17 +361,16 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
constexpr
auto
thread_buffer_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
typename
conditional
<
InSrcVectorDim
==
0
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
auto
threadwise_src_load
=
ThreadwiseTensorSliceTransfer_v2
<
InDataType
,
AccDataType
,
InGridDesc_M_K
,
decltype
(
thread_buffer_desc
),
ThreadBufferLengths
,
ThreadBufferDimAccessOrder
,
InSrcVectorDim
,
InSrcVectorSize
,
1
,
false
>
(
in_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
block_local_id
*
reduceSizePerBlock
+
...
...
@@ -418,29 +419,15 @@ struct GridwiseReduction_mk_to_mk_multiblock_partial_reduce
});
// store thread local value to LDS for parallel reduction
if
constexpr
(
reorder_thread_cluster
)
{
block_reduce_val_buf
(
thread_k_cluster_id
*
MThreadClusterSize
+
thread_m_cluster_id
)
=
tmpValue
;
block_reduce_idx_buf
(
thread_k_cluster_id
*
MThreadClusterSize
+
thread_m_cluster_id
)
=
tmpIndex
;
}
else
{
block_reduce_val_buf
(
thread_m_cluster_id
*
KThreadClusterSize
+
thread_k_cluster_id
)
=
tmpValue
;
block_reduce_idx_buf
(
thread_m_cluster_id
*
KThreadClusterSize
+
thread_k_cluster_id
)
=
tmpIndex
;
}
block_reduce_val_buf
(
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
))
=
tmpValue
;
block_reduce_idx_buf
(
block_buf_desc_m_k
.
CalculateOffset
(
thread_cluster_idx
))
=
tmpIndex
;
__syncthreads
();
BlockwiseReduceWithIndex
::
Reduce
(
block_reduce_val_buf
,
block_reduce_idx_buf
,
tmpValue
,
tmpIndex
,
thread_m_cluster_id
,
thread_k_cluster_id
);
BlockwiseReduceWithIndex
::
Reduce
(
block_reduce_val_buf
,
block_reduce_idx_buf
,
tmpValue
,
tmpIndex
);
AccumulationWithIndex
::
Calculate
(
accu_value_buf
(
I
),
tmpValue
,
accu_index_buf
(
I
),
tmpIndex
);
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment