Unverified Commit c26c154e authored by rocking's avatar rocking Committed by GitHub
Browse files

Merge branch 'develop' into avgpool_bwd

parents 0ab4fa0f 1ee99dca
repos:
- repo: local
hooks:
- id: clang-format
name: clang-format
entry: clang-format-10 -i --style=file
language: system
types_or: [c++, inc]
- id: copyright-year-checker
name: copyright-year-checker
entry: script/check_copyright_year.sh
verbose: false
language: script
types: [c++]
......@@ -12,24 +12,27 @@ RUN useradd -rm -d /home/jenkins -s /bin/bash -u 1004 jenkins
RUN chmod 1777 /tmp
RUN apt-get update
RUN apt-get install -y --allow-unauthenticated apt-utils wget gnupg2 curl
RUN if [ "$ROCMVERSION" != "5.6" ]; then \
ENV APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn
RUN curl -fsSL https://repo.radeon.com/rocm/rocm.gpg.key | gpg --dearmor -o /etc/apt/trusted.gpg.d/rocm-keyring.gpg
RUN wget https://repo.radeon.com/amdgpu-install/5.6/ubuntu/focal/amdgpu-install_5.6.50600-1_all.deb --no-check-certificate
RUN apt-get update && \
DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
./amdgpu-install_5.6.50600-1_all.deb
RUN if [ "$ROCMVERSION" != "5.7" ]; then \
wget -qO - http://repo.radeon.com/rocm/rocm.gpg.key | apt-key add - && \
sh -c "echo deb [arch=amd64] $DEB_ROCM_REPO ubuntu main > /etc/apt/sources.list.d/rocm.list"; \
elif [ "$ROCMVERSION" = "5.6" ] && [ "$compiler_version" = "" ]; then \
sh -c "wget http://artifactory-cdn.amd.com/artifactory/list/amdgpu-deb/amd-nonfree-radeon_20.04-1_all.deb" && \
apt update && apt-get install -y ./amd-nonfree-radeon_20.04-1_all.deb && \
amdgpu-repo --amdgpu-build=1567752 --rocm-build=compute-rocm-dkms-no-npi-hipclang/11914 && \
amdgpu-install -y --usecase=rocm --no-dkms; \
elif [ "$ROCMVERSION" = "5.6" ] && [ "$compiler_version" = "rc3" ] || [ "$compiler_version" = "amd-stg-open" ]; then \
sh -c "wget http://artifactory-cdn.amd.com/artifactory/list/amdgpu-deb/amdgpu-install-internal_5.6-20.04-1_all.deb" && \
apt update && apt-get install -y ./amdgpu-install-internal_5.6-20.04-1_all.deb && \
sh -c 'echo deb [arch=amd64 trusted=yes] http://compute-artifactory.amd.com/artifactory/list/rocm-release-archive-20.04-deb/ 5.6 rel-45 > /etc/apt/sources.list.d/rocm-build.list' && \
amdgpu-repo --amdgpu-build=1602498 && amdgpu-install -y --usecase=rocm --no-dkms; \
sh -c "echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] $DEB_ROCM_REPO focal main > /etc/apt/sources.list.d/rocm.list" && \
sh -c 'echo deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/amdgpu/$ROCMVERSION/ubuntu focal main > /etc/apt/sources.list.d/amdgpu.list'; \
elif [ "$ROCMVERSION" = "5.7" ] && [ "$compiler_version" = "" ] || [ "$compiler_version" = "amd-stg-open" ]; then \
sh -c "wget http://artifactory-cdn.amd.com/artifactory/list/amdgpu-deb/amdgpu-install-internal_5.7-20.04-1_all.deb" && \
apt update && apt-get install -y ./amdgpu-install-internal_5.7-20.04-1_all.deb && \
amdgpu-repo --amdgpu-build=1609671 --rocm-build=compute-rocm-npi-mi300/1354; \
fi
RUN wget --no-check-certificate -qO - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | apt-key add -
RUN sh -c "echo deb http://mirrors.kernel.org/ubuntu focal main universe | tee -a /etc/apt/sources.list"
RUN curl -fsSL https://repo.radeon.com/rocm/rocm.gpg.key | gpg --dearmor -o /etc/apt/trusted.gpg.d/rocm-keyring.gpg
RUN amdgpu-install -y --usecase=rocm --no-dkms
# Install dependencies
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-unauthenticated \
......
......@@ -11,6 +11,20 @@ def show_node_info() {
"""
}
def nthreads() {
def nproc = sh(returnStdout: true, script: 'nproc')
echo "Number of cores: ${nproc}"
def n = nproc.toInteger()
if (n > 32){
n /= 2
}
if (n > 64){
n = 64
}
echo "Number of threads used for building: ${n}"
return n
}
def runShell(String command){
def responseCode = sh returnStatus: true, script: "${command} > tmp.txt"
def output = readFile(file: "tmp.txt")
......@@ -19,7 +33,7 @@ def runShell(String command){
def getDockerImageName(){
def img
if (params.ROCMVERSION != "5.6"){
if (params.ROCMVERSION != "5.7"){
if (params.COMPILER_VERSION == "") {
img = "${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}"
}
......@@ -219,7 +233,8 @@ def cmake_build(Map conf=[:]){
"""
def setup_cmd = conf.get("setup_cmd", "${cmake_envs} cmake ${setup_args} .. ")
// reduce parallelism when compiling, clang uses too much memory
def build_cmd = conf.get("build_cmd", "${build_envs} dumb-init make -j\$(( \$(nproc) / 2 )) ${config_targets}")
def nt = nthreads()
def build_cmd = conf.get("build_cmd", "${build_envs} dumb-init make -j${nt} ${config_targets}")
def execute_cmd = conf.get("execute_cmd", "")
def cmd = conf.get("cmd", """
......@@ -461,7 +476,7 @@ def Build_CK(Map conf=[:]){
else{
echo "GPU is OK"
}
if ( runShell('grep -n "gfx1030" clinfo.log') ){
if ( runShell('grep -n "gfx1030" clinfo.log') || runShell('grep -n "gfx1101" clinfo.log') ){
navi_node = 1
}
}
......@@ -482,7 +497,7 @@ def Build_CK(Map conf=[:]){
else{
echo "GPU is OK"
}
if ( runShell('grep -n "gfx1030" clinfo.log') ){
if ( runShell('grep -n "gfx1030" clinfo.log') || runShell('grep -n "gfx1101" clinfo.log') ){
navi_node = 1
}
}
......@@ -493,8 +508,9 @@ def Build_CK(Map conf=[:]){
{
cmake_build(conf)
dir("build"){
//run tests and examples
sh 'make -j\$(( \$(nproc) / 2 )) check'
//run tests and examples
def nt = nthreads()
sh 'make -j${nt} check'
if (navi_node == 0 ){
//we only need the ckProfiler to run the performance tests, so we pack and stash it
//do not stash profiler on Navi nodes
......@@ -598,7 +614,7 @@ def process_results(Map conf=[:]){
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true
0 21 * * * % ROCMVERSION=5.5;COMPILER_VERSION=release;COMPILER_COMMIT=
0 21 * * * % ROCMVERSION=5.6;COMPILER_VERSION=;COMPILER_COMMIT=
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=''' : ""
pipeline {
......@@ -696,7 +712,7 @@ pipeline {
agent{ label rocmnode("gfx908 || gfx90a") }
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941;gfx942" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
......@@ -717,7 +733,7 @@ pipeline {
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
}
}
stage("Build CK and run Tests on Navi")
stage("Build CK and run Tests on Navi21")
{
when {
beforeAgent true
......
......@@ -109,6 +109,24 @@ make install
Instructions for using CK as a pre-built kernel library are under [client_example](/client_example)
## Contributing
When you contribute to Composable Kernel, make sure to run `clang-format` on all the changed files. We highly recommend using git hooks that are managed by the `pre-commit` framework. To install hooks, run:
```bash
sudo script/install_precommit.sh
```
This way, `pre-commit` will add the appropriate hooks to your local repository and automatically run `clang-format` (and possibly additional checks) before any commit is created.
If you need to uninstall hooks from the repository, you can do so by running the following command:
```bash
script/uninstall_precommit.sh
```
If for any reason, you need to temporarily disable precommit hooks, you can add the `--no-verify` option to the `git commit` command.
## Caveat
### Kernel Timing and Verification
......
......@@ -101,13 +101,15 @@ template <ck::index_t NumDimSpatial,
typename WeiLayout,
typename OutLayout>
bool run_grouped_conv_bwd_weight(
ck::index_t G,
ck::index_t N,
ck::index_t K,
ck::index_t C,
const ck::index_t G,
const ck::index_t N,
const ck::index_t K,
const ck::index_t C,
const std::array<ck::index_t, NumDimSpatial>& input_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial>& filter_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial>& output_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial + 3>& input_strides,
const std::array<ck::index_t, NumDimSpatial + 3>& output_strides,
const std::array<ck::index_t, NumDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NumDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NumDimSpatial>& input_left_pads,
......@@ -157,6 +159,8 @@ bool run_grouped_conv_bwd_weight(
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -224,6 +228,8 @@ bool run_grouped_conv_bwd_weight(
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......
......@@ -22,6 +22,15 @@ static constexpr ck::index_t C = 192;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Wo = 28;
static constexpr std::array<ck::index_t, NumDimSpatial> input_spatial_lengths{Wi};
static constexpr std::array<ck::index_t, NumDimSpatial> filter_spatial_lengths{X};
static constexpr std::array<ck::index_t, NumDimSpatial> output_spatial_lengths{Wo};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_strides{N * Wi * C, Wi* C, C, 1};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_strides{N * Wo * K, Wo* K, K, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_left_pads{1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_right_pads{1};
int main()
{
......@@ -31,7 +40,19 @@ int main()
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G, N, K, C, {Wi}, {X}, {Wo}, {1}, {1}, {1}, {1})
OutLayout>(G,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -25,6 +25,17 @@ static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
static constexpr std::array<ck::index_t, NumDimSpatial> input_spatial_lengths{Hi, Wi};
static constexpr std::array<ck::index_t, NumDimSpatial> filter_spatial_lengths{Y, X};
static constexpr std::array<ck::index_t, NumDimSpatial> output_spatial_lengths{Ho, Wo};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_strides{
N * Hi * Wi * C, Hi* Wi* C, Wi* C, C, 1};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_strides{
N * Ho * Wo * K, Ho* Wo* K, Wo* K, K, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1};
int main()
{
......@@ -34,8 +45,19 @@ int main()
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
G, N, K, C, {Hi, Wi}, {Y, X}, {Ho, Wo}, {1, 1}, {1, 1}, {1, 1}, {1, 1})
OutLayout>(G,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -28,6 +28,17 @@ static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
static constexpr std::array<ck::index_t, NumDimSpatial> input_spatial_lengths{Di, Hi, Wi};
static constexpr std::array<ck::index_t, NumDimSpatial> filter_spatial_lengths{Z, Y, X};
static constexpr std::array<ck::index_t, NumDimSpatial> output_spatial_lengths{Do, Ho, Wo};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_strides{
N * Di * Hi * Wi * C, Di* Hi* Wi* C, Hi* Wi* C, Wi* C, C, 1};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_strides{
N * Do * Ho * Wo * K, Do* Ho* Wo* K, Ho* Wo* K, Wo* K, K, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
int main()
{
......@@ -41,13 +52,15 @@ int main()
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads)
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -28,6 +28,17 @@ static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
static constexpr std::array<ck::index_t, NumDimSpatial> input_spatial_lengths{Di, Hi, Wi};
static constexpr std::array<ck::index_t, NumDimSpatial> filter_spatial_lengths{Z, Y, X};
static constexpr std::array<ck::index_t, NumDimSpatial> output_spatial_lengths{Do, Ho, Wo};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> input_strides{
N * Di * Hi * Wi * C, Di* Hi* Wi* C, Hi* Wi* C, Wi* C, C, 1};
static constexpr std::array<ck::index_t, NumDimSpatial + 3> output_strides{
N * Do * Ho * Wo * K, Do* Ho* Wo* K, Ho* Wo* K, Wo* K, K, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
static constexpr std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
int main()
{
......@@ -37,17 +48,20 @@ int main()
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G,
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
OutLayout>(
G,
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{N * Di * Hi * Wi * C, Di * Hi * Wi * C, Hi * Wi * C, Wi * C, C, 1},
{N * Do * Ho * Wo * K, Do * Ho * Wo * K, Ho * Wo * K, Wo * K, K, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -44,3 +44,7 @@ if(GPU_TARGETS MATCHES "gfx1100" OR GPU_TARGETS MATCHES "gfx1101" OR GPU_TARGETS
add_dependencies(example_gemm_wmma example_gemm_wmma_fp16)
endif()
if(GPU_TARGETS MATCHES "gfx940" OR GPU_TARGETS MATCHES "gfx941" OR GPU_TARGETS MATCHES "gfx942")
add_example_executable(example_gemm_xdl_f8 gemm_xdl_f8.cpp)
add_dependencies(example_gemm_xdl example_gemm_xdl_f8)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
using CDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = ck::f8_t;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// ######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 64, 1, 4>, 16>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
#include "run_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_waveletmodel_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_waveletmodel_cshuffle.hpp"
using ADataType = ck::half_t;
using BDataType = ck::half_t;
......
......@@ -3,7 +3,7 @@
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
......
......@@ -3,7 +3,7 @@
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
......
......@@ -3,7 +3,7 @@
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
using InDataType = BF16;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
......@@ -17,8 +17,20 @@ using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle<
NDimSpatial, // NDimSpatial
ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Xdl_CShuffle<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
......
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_xdl_cshuffle.hpp"
using InDataType = F16;
using WeiDataType = F16;
......@@ -16,8 +16,20 @@ using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle<
NDimSpatial, // NDimSpatial
ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Xdl_CShuffle<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
......
......@@ -75,6 +75,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> input_strides{};
std::array<ck::index_t, NDimSpatial + 3> output_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
......@@ -85,6 +87,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
range_copy(conv_param.input_spatial_lengths_, begin(input_spatial_lengths));
range_copy(conv_param.filter_spatial_lengths_, begin(filter_spatial_lengths));
range_copy(conv_param.output_spatial_lengths_, begin(output_spatial_lengths));
range_copy(in_g_n_c_wis_desc.GetStrides(), begin(input_strides));
range_copy(out_g_n_k_wos_desc.GetStrides(), begin(output_strides));
range_copy(conv_param.conv_filter_strides_, begin(conv_filter_strides));
range_copy(conv_param.conv_filter_dilations_, begin(conv_filter_dilations));
range_copy(conv_param.input_left_pads_, begin(input_left_pads));
......@@ -103,6 +107,8 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_strides,
output_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......
......@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
......
......@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment