Commit be103129 authored by Jing Zhang's avatar Jing Zhang
Browse files

Merge remote-tracking branch 'origin/develop' into xdlops_buildins

parents cab21510 ca47a6cf
#ifndef DEVICE_GEMM_XDL_C_SHUFFLE_HPP
#define DEVICE_GEMM_XDL_C_SHUFFLE_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "device_gemm_xdl.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v3r1.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
struct DeviceGemmXdl_C_Shuffle
: public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
const auto a_grid_desc_k0_m_k1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_k0_m_k1;
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
const auto b_grid_desc_k0_n_k1 =
transform_tensor_descriptor(b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_k0_n_k1;
}
static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
{
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
}
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false,
BBlockLdsAddExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl,
CBlockTransferScalarPerVector_NWaveNPerXdl>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t M01,
index_t N01,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
a_grid_desc_k0_m_k1_ =
DeviceGemmXdl_C_Shuffle::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
b_grid_desc_k0_n_k1_ =
DeviceGemmXdl_C_Shuffle::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
c_grid_desc_m_n_ = DeviceGemmXdl_C_Shuffle::MakeCGridDescriptor_M_N(M, N, StrideC);
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_ =
GridwiseGemm::
MakeCGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl(
c_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_;
typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceGemmXdl_C_Shuffle::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v3r1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdl_C_Shuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdl_C_Shuffle::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
true>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v3r1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceGemmXdl_C_Shuffle::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceGemmXdl_C_Shuffle::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::
CGridDescriptor_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl>,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
false>;
ave_time = launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_mblock_mxdlperwave_mwavemperxdl_nblock_nxdlperwave_nwavenperxdl_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{p_a,
p_b,
p_c,
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
index_t M,
index_t N,
index_t K,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
M,
N,
K,
StrideA,
StrideB,
StrideC,
1,
1,
a_element_op,
b_element_op,
c_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmXdl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
#include "host_gemm.hpp" #include "host_gemm.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "device_base.hpp" #include "device_base.hpp"
#include "device_gemm_xdl.hpp" #include "device_gemm_xdl_c_shuffle.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
...@@ -31,14 +31,45 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough; ...@@ -31,14 +31,45 @@ using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough; using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough; using CElementOp = ck::tensor_operation::element_wise::PassThrough;
// Compilation parameters for NT problem
// clang-format off // clang-format off
using DeviceGemmInstance = using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle<
//#########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds| ADataType, // ADataType
//#########################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN| BDataType, // BDataType
//#########################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | | CDataType, // CDataType
//#########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AccDataType, // AccDataType
ck::tensor_operation::device::DeviceGemmXdl< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AElementOp, BElementOp, CElementOp, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>; ALayout, // ALayout
BLayout, // BLayout
CLayout, // CLayout
AElementOp, // AElementwiseOperation
BElementOp, // BElementwiseOperation
CElementOp, // CElementwiseOperation
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXDL
32, // NPerXDL
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 1, 32, 1, 1, 8>, // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on // clang-format on
template <typename AType, template <typename AType,
...@@ -90,9 +121,9 @@ int main(int argc, char* argv[]) ...@@ -90,9 +121,9 @@ int main(int argc, char* argv[])
if(argc == 4) if(argc == 4)
{ {
M = std::stoi(argv[4]); do_verification = std::stoi(argv[1]);
N = std::stoi(argv[5]); init_method = std::stoi(argv[2]);
K = std::stoi(argv[6]); nrepeat = std::stoi(argv[3]);
} }
else if(argc == 10) else if(argc == 10)
{ {
......
...@@ -37,7 +37,7 @@ struct BiasReluAdd ...@@ -37,7 +37,7 @@ struct BiasReluAdd
{ {
#if 0 #if 0
float a = v1 + v0; float a = v1 + v0;
float b = max(a, float(0)); float b = a > 0 ? a : 0;
float c = b + v2; float c = b + v2;
return c; return c;
...@@ -52,70 +52,13 @@ struct BiasReluAdd ...@@ -52,70 +52,13 @@ struct BiasReluAdd
} }
}; };
// v0 is from A * B struct DoSomething
// v1 is from C0
// v2 is from C1
struct BiasLeakyReluAdd
{
template <typename T1, typename T2>
__host__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{
float a = v0 + v1;
float b = 0.1 * a;
float c = b > 0 ? b : 0;
float d = c + v2;
return d;
}
template <typename T1, typename T2>
__device__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{
constexpr float alpha = 0.1;
constexpr float alpha_inv = 1.0 / alpha;
float a = v2 * alpha_inv;
float b = v1 + v0;
float c = max(b, float(0));
float d = alpha * (a + c);
return d;
}
};
struct BiasLeakyRelu
{
template <typename T1, typename T2>
__host__ constexpr float operator()(float v0, T1 v1, T2) const
{
float a = v0 + v1;
float b = 0.1 * a;
float c = b > 0 ? b : 0;
return c;
}
template <typename T1, typename T2>
__device__ constexpr float operator()(float v0, T1 v1, T2) const
{
constexpr float alpha = 0.1;
float b = v1 + v0;
float c = max(b, float(0));
float d = alpha * c;
return d;
}
};
struct BiasAdd
{ {
#if 1 #if 1
// correct result // correct result
// no scratch memory, good VGPR allocation (59) // no scratch memory, good VGPR allocation (59)
// good perf (101Tflops) // good perf (101Tflops @ 1089Mhz)
template <typename T1, typename T2> __host__ __device__ constexpr float operator()(float v0, ck::half_t v1, ck::half_t v2) const
__host__ __device__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{ {
constexpr float alpha = 0.1; constexpr float alpha = 0.1;
constexpr float beta = 0.2; constexpr float beta = 0.2;
...@@ -124,7 +67,7 @@ struct BiasAdd ...@@ -124,7 +67,7 @@ struct BiasAdd
// compiler seems very volatile to the order of these calculation: // compiler seems very volatile to the order of these calculation:
// compiler is very eager to read AccVgpr (v0) out prematurely, resulting in register // compiler is very eager to read AccVgpr (v0) out prematurely, resulting in register
// over-allocation. Therefore, move v0 calculation to the very end // over-allocation. Therefore, move v0 calculation to the very end
float a = T1(beta) * v1 + T2(gamma) * v2; float a = ck::half_t(beta) * v1 + ck::half_t(gamma) * v2;
float b = a + float(alpha) * v0; float b = a + float(alpha) * v0;
return b; return b;
...@@ -137,15 +80,14 @@ struct BiasAdd ...@@ -137,15 +80,14 @@ struct BiasAdd
// wrong result // wrong result
// lots of scratch memory // lots of scratch memory
// huge perf drop // huge perf drop
template <typename T1, typename T2> __host__ __device__ constexpr float operator()(float v0, ck::half_t v1, ck::half_t v2) const
__host__ __device__ constexpr float operator()(float v0, T1 v1, T2 v2) const
{ {
return alpha * v0 + beta * v1 + gamma * v2; return alpha * v0 + beta * v1 + gamma * v2;
} }
#elif 0 #elif 0
// correct result // correct result
// some scratch memory (68 dword) // some scratch memory (68 dword)
// some perf drop (94Tflops) // some perf drop (94Tflops @ 1089MHz)
// fp64 instructions are used // fp64 instructions are used
__host__ __device__ constexpr auto operator()(float v0, ck::half_t v1, ck::half_t v2) const __host__ __device__ constexpr auto operator()(float v0, ck::half_t v1, ck::half_t v2) const
{ {
...@@ -185,16 +127,20 @@ using CLayout = ck::tensor_layout::gemm::RowMajor; ...@@ -185,16 +127,20 @@ using CLayout = ck::tensor_layout::gemm::RowMajor;
using AOp = PassThrough; using AOp = PassThrough;
using BOp = PassThrough; using BOp = PassThrough;
#if 1
using COp = BiasReluAdd; using COp = BiasReluAdd;
#else
using COp = DoSomething;
#endif
// Compilation parameters for NT problem // Compilation parameters for NT problem
// clang-format off // clang-format off
using DeviceGemmInstance = using DeviceGemmInstance =
//#################################################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds| //#################################################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//#################################################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN| //#################################################################| Type| Type| Type| Type| | | | Operation| Operation| Operation| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//#################################################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | | //#################################################################| | | | | | | | | | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//#################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | //#################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGemmXdl_two_extra_source_reduce< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AOp, BOp, COp, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>; ck::tensor_operation::device::DeviceGemmXdl_two_extra_source_reduce< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout, AOp, BOp, COp, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>;
// clang-format on // clang-format on
template <typename AType, template <typename AType,
...@@ -215,16 +161,15 @@ static void host_verify(const Tensor<AType>& a_m_k, ...@@ -215,16 +161,15 @@ static void host_verify(const Tensor<AType>& a_m_k,
auto f_mk_kn_mn = [&](auto m, auto n) { auto f_mk_kn_mn = [&](auto m, auto n) {
const int K = a_m_k.mDesc.GetLengths()[1]; const int K = a_m_k.mDesc.GetLengths()[1];
double v = 0; float acc = 0;
for(int k = 0; k < K; ++k) for(int k = 0; k < K; ++k)
{ {
v += static_cast<const double>(a_element_op(a_m_k(m, k))) * acc += static_cast<const double>(a_element_op(a_m_k(m, k))) *
static_cast<const double>(b_element_op(b_k_n(k, n))); static_cast<const double>(b_element_op(b_k_n(k, n)));
} }
c_m_n(m, n) = c_element_op( c_m_n(m, n) = c_element_op(acc, c0_m_n(m, n), c1_m_n(m, n));
v, static_cast<const double>(c0_m_n(m, n)), static_cast<const double>(c1_m_n(m, n)));
}; };
make_ParallelTensorFunctor(f_mk_kn_mn, make_ParallelTensorFunctor(f_mk_kn_mn,
...@@ -249,9 +194,9 @@ int main(int argc, char* argv[]) ...@@ -249,9 +194,9 @@ int main(int argc, char* argv[])
if(argc == 4) if(argc == 4)
{ {
M = std::stoi(argv[4]); do_verification = std::stoi(argv[1]);
N = std::stoi(argv[5]); init_method = std::stoi(argv[2]);
K = std::stoi(argv[6]); nrepeat = std::stoi(argv[3]);
} }
else if(argc == 10) else if(argc == 10)
{ {
...@@ -337,7 +282,9 @@ int main(int argc, char* argv[]) ...@@ -337,7 +282,9 @@ int main(int argc, char* argv[])
c0_m_n_device_buf.ToDevice(c0_m_n.mData.data()); c0_m_n_device_buf.ToDevice(c0_m_n.mData.data());
c1_m_n_device_buf.ToDevice(c1_m_n.mData.data()); c1_m_n_device_buf.ToDevice(c1_m_n.mData.data());
auto c_element_op = BiasReluAdd{}; auto a_element_op = AOp{};
auto b_element_op = BOp{};
auto c_element_op = COp{};
// do GEMM // do GEMM
auto gemm = DeviceGemmInstance{}; auto gemm = DeviceGemmInstance{};
...@@ -354,8 +301,8 @@ int main(int argc, char* argv[]) ...@@ -354,8 +301,8 @@ int main(int argc, char* argv[])
StrideA, StrideA,
StrideB, StrideB,
StrideC, StrideC,
PassThrough{}, a_element_op,
PassThrough{}, b_element_op,
c_element_op); c_element_op);
if(!gemm.IsSupportedArgument(argument)) if(!gemm.IsSupportedArgument(argument))
......
...@@ -35,24 +35,22 @@ template <typename ADataType, ...@@ -35,24 +35,22 @@ template <typename ADataType,
ck::index_t NPerXDL, ck::index_t NPerXDL,
ck::index_t MXdlPerWave, ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave, ck::index_t NXdlPerWave,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1, typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder, typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder, typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim, ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector, ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1, ck::index_t ABlockTransferDstScalarPerVector_K1,
typename BBlockTransferThreadSliceLengths_K0_N_K1, bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1, typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder, typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder, typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim, ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector, ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1, ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim, ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector, ck::index_t CThreadTransferDstScalarPerVector>
bool ABlockLdsAddExtraM,
bool BBlockLdsAddExtraN>
struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
{ {
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
...@@ -137,45 +135,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -137,45 +135,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
using C1GridDesc_M_N = using C1GridDesc_M_N =
decltype(make_naive_tensor_descriptor(make_tuple(1, 1), make_tuple(I1, I0))); decltype(make_naive_tensor_descriptor(make_tuple(1, 1), make_tuple(I1, I0)));
// TODO remove these hacks
static constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
static constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
static constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
static constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
static constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
// GridwiseGemm // GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5< using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5<
BlockSize, BlockSize,
...@@ -199,7 +158,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -199,7 +158,6 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
K1, K1,
MXdlPerWave, MXdlPerWave,
NXdlPerWave, NXdlPerWave,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1, ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder, ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder, ABlockTransferSrcAccessOrder,
...@@ -207,25 +165,18 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator ...@@ -207,25 +165,18 @@ struct DeviceGemmXdl_two_extra_source_reduce : public BaseOperator
ABlockTransferSrcScalarPerVector, ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1, ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun, false, // AThreadTransferSrcResetCoordinateAfterRun,
BBlockTransferThreadSliceLengths_K0_N_K1, ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1, BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder, BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder, BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim, BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector, BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1, BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun, false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder, Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim, CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector, CThreadTransferDstScalarPerVector>;
decltype(a_k0_m_k1_grid_step_hacks), // AGridStepHacks,
decltype(b_k0_n_k1_grid_step_hacks), // BGridStepHacks,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks), // CGridStepHacks,
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks), // AGridMoveSliceWindowStepHacks,
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks), // BGridMoveSliceWindowStepHacks,
false, // CAccessOrderMRepeatNRepeat,
ABlockLdsAddExtraM,
BBlockLdsAddExtraN>;
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 = using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{})); decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
......
find . -name deps -prune -o -name build -prune -o -iname '*.h' -o -iname '*.hpp' -o -iname '*.cpp' -o -iname '*.h.in' -o -iname '*.hpp.in' -o -iname '*.cpp.in' -o -iname '*.cl' -o -iname '*.cuh' -o -iname '*.cu' | xargs -n 1 -P 16 -I{} -t sh -c 'clang-format-10 -i -style=file {}'
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment