Commit bd5a1bc2 authored by Chao Liu's avatar Chao Liu
Browse files

add bwd-data-v4r1 nhwc

parent e9c5efc4
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "gridwise_operation_wrapper.hpp"
#include "gridwise_convolution_backward_data_implicit_gemm_v4r1_nhwc_kyxc_nhwk.hpp"
namespace launcher {
using namespace ck;
template <typename T,
typename InDesc,
typename WeiDesc,
typename OutDesc,
typename ConvStrides,
typename ConvDilations,
typename InLeftPads,
typename InRightPads>
void device_convolution_backward_data_implicit_gemm_v4r1_nhwc_kyxc_nhwk(InDesc in_nchw_desc,
Tensor<T>& in_nchw,
WeiDesc wei_kcyx_desc,
const Tensor<T>& wei_kcyx,
OutDesc out_nkhw_desc,
const Tensor<T>& out_nkhw,
ConvStrides,
ConvDilations,
InLeftPads,
InRightPads,
std::size_t nrepeat)
{
constexpr index_t N = out_nkhw_desc.GetLengths()[0];
constexpr index_t K = out_nkhw_desc.GetLengths()[1];
constexpr index_t C = wei_kcyx_desc.GetLengths()[1];
constexpr index_t Hi = in_nchw_desc.GetLengths()[2];
constexpr index_t Wi = in_nchw_desc.GetLengths()[3];
constexpr index_t Ho = out_nkhw_desc.GetLengths()[2];
constexpr index_t Wo = out_nkhw_desc.GetLengths()[3];
constexpr index_t Y = wei_kcyx_desc.GetLengths()[2];
constexpr index_t X = wei_kcyx_desc.GetLengths()[3];
constexpr index_t ConvStrideH = ConvStrides{}[0];
constexpr index_t ConvStrideW = ConvStrides{}[1];
constexpr index_t ConvDilationH = ConvDilations{}[0];
constexpr index_t ConvDilationW = ConvDilations{}[1];
constexpr auto in_nhwc_desc = make_native_tensor_descriptor_packed(Sequence<N, Hi, Wi, C>{});
constexpr auto wei_kyxc_desc = make_native_tensor_descriptor_packed(Sequence<K, Y, X, C>{});
constexpr auto out_nhwk_desc = make_native_tensor_descriptor_packed(Sequence<N, Ho, Wo, K>{});
Tensor<float> in_nhwc(make_HostTensorDescriptor(in_nhwc_desc));
Tensor<float> wei_kyxc(make_HostTensorDescriptor(wei_kyxc_desc));
Tensor<float> out_nhwk(make_HostTensorDescriptor(out_nhwk_desc));
auto f_nchw2nhwc = [&](auto n, auto hi, auto wi, auto c) {
in_nhwc(n, hi, wi, c) = in_nchw(n, c, hi, wi);
};
auto f_kcyx2kyxc = [&](auto k, auto y, auto x, auto c) {
wei_kyxc(k, y, x, c) = wei_kcyx(k, c, y, x);
};
auto f_nkhw2nhwk = [&](auto n, auto ho, auto wo, auto k) {
out_nhwk(n, ho, wo, k) = out_nkhw(n, k, ho, wo);
};
make_ParallelTensorFunctor(f_nchw2nhwc, N, Hi, Wi, C)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(f_kcyx2kyxc, K, Y, X, C)(std::thread::hardware_concurrency());
make_ParallelTensorFunctor(f_nkhw2nhwk, N, Ho, Wo, K)(std::thread::hardware_concurrency());
std::size_t data_sz = sizeof(T);
DeviceMem in_nhwc_device_buf(data_sz * in_nhwc.mDesc.GetElementSpace());
DeviceMem wei_kyxc_device_buf(data_sz * wei_kyxc.mDesc.GetElementSpace());
DeviceMem out_nhwk_device_buf(data_sz * out_nhwk.mDesc.GetElementSpace());
in_nhwc_device_buf.ToDevice(in_nhwc.mData.data());
wei_kyxc_device_buf.ToDevice(wei_kyxc.mData.data());
out_nhwk_device_buf.ToDevice(out_nhwk.mData.data());
#if 0
// cdata = 64, BlockSize = 256, 128x128x8
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 8;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmThreadGemmDataPerReadM = 4;
constexpr index_t GemmThreadGemmDataPerReadN = 4;
using GemmABlockCopyThreadSliceLengths_GemmK_GemmM = Sequence<1, 4>;
using GemmABlockCopyThreadClusterLengths_GemmK_GemmM = Sequence<8, 32>;
constexpr index_t GemmABlockCopySrcDataPerRead_GemmM = 4;
constexpr index_t GemmABlockCopyDstDataPerWrite_GemmM = 4;
using GemmBBlockCopyThreadSliceLengths_GemmK_GemmN = Sequence<4, 1>;
using GemmBBlockCopyThreadClusterLengths_GemmK_GemmN = Sequence<2, 128>;
constexpr index_t GemmBBlockCopySrcDataPerRead_GemmK = 4;
constexpr index_t GemmBBlockCopyDstDataPerWrite_GemmN = 1;
constexpr index_t GemmCThreadCopyDstDataPerWrite_GemmN1 = 1;
#elif 1
// cdata = 64, BlockSize = 256, 128x128x16
constexpr index_t BlockSize = 256;
constexpr index_t GemmMPerBlock = 128;
constexpr index_t GemmNPerBlock = 128;
constexpr index_t GemmKPerBlock = 16;
constexpr index_t GemmMPerThread = 4;
constexpr index_t GemmNPerThread = 4;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmMLevel0Cluster = 4;
constexpr index_t GemmNLevel0Cluster = 4;
constexpr index_t GemmMLevel1Cluster = 4;
constexpr index_t GemmNLevel1Cluster = 4;
constexpr index_t GemmThreadGemmDataPerReadM = 4;
constexpr index_t GemmThreadGemmDataPerReadN = 4;
using GemmABlockCopyThreadSliceLengths_GemmK_GemmM = Sequence<2, 4>;
using GemmABlockCopyThreadClusterLengths_GemmK_GemmM = Sequence<8, 32>;
constexpr index_t GemmABlockCopySrcDataPerRead_GemmM = 4;
constexpr index_t GemmABlockCopyDstDataPerWrite_GemmM = 4;
using GemmBBlockCopyThreadSliceLengths_GemmK_GemmN = Sequence<8, 1>;
using GemmBBlockCopyThreadClusterLengths_GemmK_GemmN = Sequence<2, 128>;
constexpr index_t GemmBBlockCopySrcDataPerRead_GemmK = 4;
constexpr index_t GemmBBlockCopyDstDataPerWrite_GemmN = 1;
constexpr index_t GemmCThreadCopyDstDataPerWrite_GemmN1 = 1;
#endif
constexpr index_t GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
constexpr index_t GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
constexpr index_t YTilda = ConvStrideH / GcdStrideDilationH;
constexpr index_t XTilda = ConvStrideW / GcdStrideDilationW;
constexpr index_t YDot = math::integer_divide_ceil(Y, YTilda);
constexpr index_t XDot = math::integer_divide_ceil(X, XTilda);
constexpr index_t HTilda = Ho + math::integer_divide_ceil(ConvDilationH * (Y - 1), ConvStrideH);
constexpr index_t WTilda = Wo + math::integer_divide_ceil(ConvDilationW * (X - 1), ConvStrideW);
constexpr index_t HTildaLeft = math::integer_divide_floor(
math::max(0, InLeftPads{}[0] - ConvDilationH * (YTilda - 1)), ConvStrides{}[0]);
constexpr index_t WTildaLeft = math::integer_divide_floor(
math::max(0, InLeftPads{}[1] - ConvDilationW * (XTilda - 1)), ConvStrides{}[1]);
constexpr index_t HTildaRight = math::min(
HTilda, math::integer_divide_ceil(InLeftPads{}[0] + Hi - 1, ConvStrides{}[0]) + 1);
constexpr index_t WTildaRight = math::min(
WTilda, math::integer_divide_ceil(InLeftPads{}[1] + Wi - 1, ConvStrides{}[1]) + 1);
constexpr index_t HTildaSlice = HTildaRight - HTildaLeft;
constexpr index_t WTildaSlice = WTildaRight - WTildaLeft;
constexpr index_t GemmM = C;
constexpr index_t GemmN = N * HTildaSlice * WTildaSlice;
constexpr index_t GridSize = math::integer_divide_ceil(GemmM, GemmMPerBlock) *
math::integer_divide_ceil(GemmN, GemmNPerBlock);
printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);
for(index_t i = 0; i < 5; ++i)
{
std::cout << "Start running " << nrepeat << " times..." << std::endl;
KernelTimer timer;
timer.Start();
for(index_t i = 0; i < nrepeat; ++i)
{
using GridwiseConvBwdData =
GridwiseConvolutionBackwardDataImplicitGemm_v4r1_nhwc_kyxc_nhwk<
GridSize,
BlockSize,
T,
T,
decltype(in_nhwc_desc),
decltype(wei_kyxc_desc),
decltype(out_nhwk_desc),
ConvStrides,
ConvDilations,
InLeftPads,
InRightPads,
GemmMPerBlock,
GemmNPerBlock,
GemmKPerBlock,
GemmMPerThread,
GemmNPerThread,
GemmKPerThread,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmThreadGemmDataPerReadM,
GemmThreadGemmDataPerReadN,
GemmABlockCopyThreadSliceLengths_GemmK_GemmM,
GemmABlockCopyThreadClusterLengths_GemmK_GemmM,
GemmABlockCopySrcDataPerRead_GemmM,
GemmABlockCopyDstDataPerWrite_GemmM,
GemmBBlockCopyThreadSliceLengths_GemmK_GemmN,
GemmBBlockCopyThreadClusterLengths_GemmK_GemmN,
GemmBBlockCopySrcDataPerRead_GemmK,
GemmBBlockCopyDstDataPerWrite_GemmN,
GemmCThreadCopyDstDataPerWrite_GemmN1>;
static_for<0, GridwiseConvBwdData::GetNumberOfGemm(), 1>{}([&](auto gemm_id) {
constexpr auto gemm_sizes = GridwiseConvBwdData::GetGemmSize(gemm_id);
constexpr index_t gemm_k = gemm_sizes.At(2);
constexpr bool is_gemm_not_empty = gemm_k > 0;
// only compile and run if GEMM is no empty
static_if<is_gemm_not_empty>{}([&](auto fwd) {
launch_kernel(run_gridwise_operation<GridwiseConvBwdData,
T* const __restrict__,
const T* const __restrict__,
const T* const __restrict__,
decltype(gemm_id)>,
dim3(GridSize),
dim3(BlockSize),
0,
0,
static_cast<T*>(in_nhwc_device_buf.GetDeviceBuffer()),
static_cast<T*>(wei_kyxc_device_buf.GetDeviceBuffer()),
static_cast<T*>(out_nhwk_device_buf.GetDeviceBuffer()),
fwd(gemm_id));
});
});
}
timer.End();
float ave_time = timer.GetElapsedTime() / nrepeat;
float perf = (float)calculate_convolution_flops(InDesc{}, WeiDesc{}, OutDesc{}) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
in_nhwc_device_buf.FromDevice(in_nhwc.mData.data());
auto f_nhwc2nchw = [&](auto n, auto c, auto hi, auto wi) {
in_nchw(n, c, hi, wi) = in_nhwc(n, hi, wi, c);
};
make_ParallelTensorFunctor(f_nhwc2nchw, N, C, Hi, Wi)(std::thread::hardware_concurrency());
}
} // namespace launcher
......@@ -16,6 +16,7 @@
#include "device_convolution_backward_data_implicit_gemm_v1r1_nchw_kcyx_nkhw.hpp"
#include "device_convolution_backward_data_implicit_gemm_v1r2_nchw_kcyx_nkhw.hpp"
#include "device_convolution_backward_data_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp"
#include "device_convolution_backward_data_implicit_gemm_v4r1_nhwc_kyxc_nhwk.hpp"
#include "device_convolution_backward_data_implicit_gemm_v5r1_nhwc_kyxc_nhwk.hpp"
int main(int argc, char* argv[])
......@@ -156,7 +157,7 @@ int main(int argc, char* argv[])
using LeftPads = Sequence<2, 2>;
using RightPads = Sequence<2, 2>;
#elif 0
#elif 1
// 1x7 filter, 0x3 pad, 17x17 input
constexpr index_t N = 128;
constexpr index_t C = 256;
......@@ -186,7 +187,7 @@ int main(int argc, char* argv[])
using LeftPads = Sequence<3, 0>;
using RightPads = Sequence<3, 0>;
#elif 1
#elif 0
// 3x3 filter, 2x2 stride, 35x35 input, 17x17 output
constexpr index_t N = 128;
constexpr index_t C = 256;
......@@ -250,6 +251,8 @@ int main(int argc, char* argv[])
device_convolution_backward_data_implicit_gemm_v1r2_nchw_kcyx_nkhw
#elif 0
device_convolution_backward_data_implicit_gemm_v4r1_nchw_kcyx_nkhw
#elif 1
device_convolution_backward_data_implicit_gemm_v4r1_nhwc_kyxc_nhwk
#elif 1
device_convolution_backward_data_implicit_gemm_v5r1_nhwc_kyxc_nhwk
#endif
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment