Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
bcc66c9b
Commit
bcc66c9b
authored
Nov 01, 2023
by
Astha Rai
Browse files
updated column major implementation
parent
f22f565c
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
194 additions
and
33 deletions
+194
-33
example/65_hip_tensor_permute/CMakeLists.txt
example/65_hip_tensor_permute/CMakeLists.txt
+1
-0
example/65_hip_tensor_permute/elementwise_permute_4D_fp16_col.cpp
...65_hip_tensor_permute/elementwise_permute_4D_fp16_col.cpp
+151
-0
example/65_hip_tensor_permute/elementwise_permute_4D_fp32_col.cpp
...65_hip_tensor_permute/elementwise_permute_4D_fp32_col.cpp
+42
-33
No files found.
example/65_hip_tensor_permute/CMakeLists.txt
View file @
bcc66c9b
add_example_executable
(
example_elementwise_permute_4D_fp32_ht elementwise_permute_4D_fp32_ht.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_ht elementwise_permute_4D_fp16_ht.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
example/65_hip_tensor_permute/elementwise_permute_4D_fp16_col.cpp
0 → 100644
View file @
bcc66c9b
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl_ht.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
UnaryOp
,
// UnaryOp
Scale
,
// Scalar
4
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
FunctorA
,
typename
FunctorB
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
FunctorA
functor_a
,
FunctorB
functor_b
,
float
scale
)
{
for
(
std
::
size_t
n
=
0
;
n
<
A_nchw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_nchw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
A_nchw
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_nchw
.
mDesc
.
GetLengths
()[
3
];
++
w
)
{
ADataType
tmp_val
;
auto
a_val
=
A_nchw
(
n
,
c
,
h
,
w
);
functor_b
(
tmp_val
,
a_val
);
functor_a
(
B_nhwc
(
n
,
h
,
w
,
c
),
scale
*
tmp_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
2
,
1
,
8
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
4
,
1
,
8
,
2
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
1.
f
;
// a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
//
// for(std::size_t i = 0; i < a.mData.size(); i++){
// a.mData[i] = i;
// }
//
auto
i
=
0
;
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
a
.
mDesc
.
GetLengths
()[
0
];
++
n
)
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
nhwc
[
1
]
*
nhwc
[
2
]
*
nhwc
[
3
]),
1
,
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{},
UnaryOp
{},
Scale
{
scale
});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"A : "
,
a
.
mData
,
","
)
<<
std
::
endl
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{},
UnaryOp
{},
scale
);
LogRangeAsType
<
float
>
(
std
::
cout
<<
"B : "
,
b
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"Host B : "
,
host_b
.
mData
,
","
)
<<
std
::
endl
;
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/65_hip_tensor_permute/elementwise_permute_4D_fp32_col.cpp
View file @
bcc66c9b
...
...
@@ -28,25 +28,25 @@ using DeviceElementwisePermuteInstance =
Scale
,
// Scalar
4
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
8
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
FunctorA
,
typename
FunctorB
>
void
host_elementwise4D
(
HostTensorB
&
B_
cwhn
,
const
HostTensorA
&
A_
whcn
,
void
host_elementwise4D
(
HostTensorB
&
B_
nhwc
,
const
HostTensorA
&
A_
nchw
,
FunctorA
functor_a
,
FunctorB
functor_b
,
float
scale
)
{
for
(
std
::
size_t
w
=
0
;
w
<
A_
whcn
.
mDesc
.
GetLengths
()[
0
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
A_
whcn
.
mDesc
.
GetLengths
()[
1
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
A_
whcn
.
mDesc
.
GetLengths
()[
2
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
A_
whcn
.
mDesc
.
GetLengths
()[
3
];
++
n
)
for
(
std
::
size_t
n
=
0
;
n
<
A_
nchw
.
mDesc
.
GetLengths
()[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
A_
nchw
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
A_
nchw
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
A_
nchw
.
mDesc
.
GetLengths
()[
3
];
++
w
)
{
ADataType
tmp_val
;
auto
a_val
=
A_
whcn
(
w
,
h
,
c
,
n
);
auto
a_val
=
A_
nchw
(
n
,
c
,
h
,
w
);
functor_b
(
tmp_val
,
a_val
);
functor_a
(
B_
cwhn
(
c
,
w
,
h
,
n
),
scale
*
tmp_val
);
functor_a
(
B_
nhwc
(
n
,
h
,
w
,
c
),
scale
*
tmp_val
);
}
}
...
...
@@ -55,18 +55,27 @@ int main()
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
whcn
=
{
4
,
2
,
1
,
8
};
std
::
vector
<
std
::
size_t
>
cwhn
=
{
1
,
4
,
2
,
8
};
Tensor
<
ADataType
>
a
(
whcn
);
Tensor
<
BDataType
>
b
(
cwhn
);
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
2
,
1
,
8
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
4
,
1
,
8
,
2
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
1.
f
;
// a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
for
(
int
i
=
0
;
i
<
int
(
a
.
mData
.
size
());
i
++
)
{
a
.
mData
[
i
]
=
i
;
}
//
// for(std::size_t i = 0; i < a.mData.size(); i++){
// a.mData[i] = i;
// }
//
auto
i
=
0
;
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
n
=
0
;
n
<
a
.
mDesc
.
GetLengths
()[
0
];
++
n
)
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -77,17 +86,16 @@ int main()
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
whcn
[
0
]
*
whcn
[
1
]
*
whcn
[
2
]),
static_cast
<
int
>
(
whcn
[
0
]
*
whcn
[
1
]),
static_cast
<
int
>
(
whcn
[
0
]),
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
static_cast
<
int
>
(
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
2
]
*
nchw
[
3
]),
static_cast
<
int
>
(
nchw
[
3
]),
1
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
cwhn
[
0
]
*
cwhn
[
1
]
*
cwhn
[
2
]),
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
static_cast
<
int
>
(
nhwc
[
1
]
*
nhwc
[
2
]
*
nhwc
[
3
]),
1
,
static_cast
<
int
>
(
cwhn
[
0
]
*
cwhn
[
1
]),
static_cast
<
int
>
(
cwhn
[
0
])};
static_cast
<
int
>
(
nhwc
[
2
]
*
nhwc
[
3
]),
static_cast
<
int
>
(
nhwc
[
3
])};
ck
::
ranges
::
copy
(
whcn
,
ab_lengths
.
begin
());
ck
::
ranges
::
copy
(
nchw
,
ab_lengths
.
begin
());
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
...
...
@@ -105,16 +113,16 @@ int main()
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (
whcn
): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (
cwhn
): "
<<
b
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"A (
nchw
): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (
nhwc
): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
whcn
[
0
]
*
whcn
[
1
]
*
whcn
[
2
]
*
whcn
[
3
];
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
whcn
[
0
]
*
whcn
[
1
]
*
whcn
[
2
]
*
whcn
[
3
])
+
sizeof
(
BDataType
)
*
(
whcn
[
0
]
*
whcn
[
1
]
*
whcn
[
2
]
*
whcn
[
3
]);
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
...
@@ -129,11 +137,12 @@ int main()
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
Tensor
<
BDataType
>
host_b
(
cwhn
);
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
(
host_b
,
a
,
PassThrough
{},
UnaryOp
{},
scale
);
LogRangeAsType
<
float
>
(
std
::
cout
<<
"B : "
,
b
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"Host B : "
,
host_b
.
mData
,
","
)
<<
std
::
endl
;
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment