Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b79df771
Commit
b79df771
authored
Jul 12, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
05d38218
63914743
Changes
692
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1035 additions
and
425 deletions
+1035
-425
example/01_gemm/gemm_dl_int8.cpp
example/01_gemm/gemm_dl_int8.cpp
+14
-13
example/01_gemm/gemm_xdl_bf16.cpp
example/01_gemm/gemm_xdl_bf16.cpp
+24
-25
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+50
-32
example/01_gemm/gemm_xdl_fp64.cpp
example/01_gemm/gemm_xdl_fp64.cpp
+15
-14
example/01_gemm/gemm_xdl_int8.cpp
example/01_gemm/gemm_xdl_int8.cpp
+15
-13
example/02_gemm_alpha_beta/CMakeLists.txt
example/02_gemm_alpha_beta/CMakeLists.txt
+0
-1
example/02_gemm_bilinear/CMakeLists.txt
example/02_gemm_bilinear/CMakeLists.txt
+1
-0
example/02_gemm_bilinear/README.md
example/02_gemm_bilinear/README.md
+6
-4
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
+305
-0
example/03_gemm_bias_relu/CMakeLists.txt
example/03_gemm_bias_relu/CMakeLists.txt
+1
-1
example/03_gemm_bias_relu/README.md
example/03_gemm_bias_relu/README.md
+5
-23
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
+281
-0
example/04_gemm_add_add_fastgelu/CMakeLists.txt
example/04_gemm_add_add_fastgelu/CMakeLists.txt
+1
-0
example/04_gemm_add_add_fastgelu/README.md
example/04_gemm_add_add_fastgelu/README.md
+23
-0
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp16.cpp
..._gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp16.cpp
+248
-0
example/04_gemm_bias_relu_add/CMakeLists.txt
example/04_gemm_bias_relu_add/CMakeLists.txt
+0
-1
example/04_gemm_bias_relu_add/gemm_xdl_bias_relu_add.cpp
example/04_gemm_bias_relu_add/gemm_xdl_bias_relu_add.cpp
+0
-257
example/06_conv2d_fwd_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
example/06_conv2d_fwd_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
+15
-14
example/07_conv2d_fwd_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
...conv2d_fwd_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
+15
-14
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
+16
-13
No files found.
example/01_gemm/gemm_dl_int8.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "ck/library/utility/check_err.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "device_tensor.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
example/01_gemm/gemm_xdl_bf16.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "device_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -83,8 +84,13 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
...
@@ -83,8 +84,13 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
ReferenceGemm
<
float
,
float
,
float
,
float
,
PassThrough
,
PassThrough
,
PassThrough
>
;
BDataType
,
CDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
...
@@ -215,24 +221,17 @@ int main(int argc, char* argv[])
...
@@ -215,24 +221,17 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
float
>
a_f32_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
float
>
b_f32_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
float
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
float
>
c_m_n_device_f32_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
bf16_to_f32_
(
a_m_k
,
a_f32_m_k
);
bf16_to_f32_
(
b_k_n
,
b_f32_k_n
);
bf16_to_f32_
(
c_m_n_device_result
,
c_m_n_device_f32_result
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_
f32_
m_k
,
b_
f32_
k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_
f32_
result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/01_gemm/gemm_xdl_fp16.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "device.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "host_tensor.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "ck/library/utility/check_err.hpp"
#include "device_gemm_xdl.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -27,30 +29,42 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
...
@@ -27,30 +29,42 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
ck
::
half_t
;
using
ADataType
=
F16
;
using
BDataType
=
ck
::
half_t
;
using
BDataType
=
F16
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
F32
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ALayout
=
Row
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
BLayout
=
Col
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
CLayout
=
Row
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance0
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
// clang-format off
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
256
,
128
,
4
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// clang-format on
using
DeviceGemmInstance1
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
// clang-format off
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
// clang-format on
using
DeviceGemmInstance
=
DeviceGemmInstance0
;
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
...
@@ -69,7 +83,11 @@ int main(int argc, char* argv[])
...
@@ -69,7 +83,11 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
@@ -93,7 +111,7 @@ int main(int argc, char* argv[])
...
@@ -93,7 +111,7 @@ int main(int argc, char* argv[])
{
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n
0
, 1=yes)
\n
"
);
printf
(
"arg3: time kernel (0=n
o
, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
exit
(
0
);
}
}
...
...
example/01_gemm/gemm_xdl_fp64.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "device.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "device_tensor.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
example/01_gemm/gemm_xdl_int8.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "device.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/utility/check_err.hpp"
#include "device_tensor.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "gemm_specialization.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
example/02_gemm_alpha_beta/CMakeLists.txt
deleted
100644 → 0
View file @
05d38218
add_example_executable
(
example_gemm_xdl_alpha_beta gemm_xdl_alpha_beta.cpp
)
example/02_gemm_bilinear/CMakeLists.txt
0 → 100644
View file @
b79df771
add_example_executable
(
example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp
)
example/02_gemm_
alpha_beta
/README.md
→
example/02_gemm_
bilinear
/README.md
View file @
b79df771
# Instructions for ```example_gemm_
xdl_alpha_beta
```
# Instructions for ```example_gemm_
bilinear_xdl_fp16
```
## Run ```example_gemm_
xdl_alpha_beta
```
## Run ```example_gemm_
bilinear_xdl_fp16
```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg3: time kernel (0=no, 1=yes)
./bin/example_gemm_xdl_alpha_beta 1 1 1 0.5 0.5
#arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
#arg11 to 12: alpha, beta
./bin/example_gemm_bilinear_xdl_fp16 1 1 1 3840 4096 4096 4096 4096 4096 4096 0.5 0.5
```
```
Result (MI100 @ 1502Mhz, 184.6TFlops peak FP16)
Result (MI100 @ 1502Mhz, 184.6TFlops peak FP16)
```
```
...
...
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
0 → 100644
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
BLayout
,
DELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideE
=
4096
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
11
]);
beta
=
std
::
stof
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
DELayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
DELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
DELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/03_gemm_bias_relu/CMakeLists.txt
View file @
b79df771
add_example_executable
(
example_gemm_
xdl_
bias_relu gemm_
xdl_
bias_relu.cpp
)
add_example_executable
(
example_gemm_bias_relu
_xdl_fp16
gemm_bias_relu
_xdl_fp16
.cpp
)
example/03_gemm_bias_relu/README.md
View file @
b79df771
# Instructions for ```example_gemm_
xdl_
bias_relu_
add
```
# Instructions for ```example_gemm_bias_relu_
xdl_fp16
```
## Run ```example_gemm_
xdl_
bias_relu_
add
```
## Run ```example_gemm_bias_relu_
xdl_fp16
```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE
./bin/example_gemm_xdl_bias_relu_add 0 1 5 3840 4096 4096 4096 4096 4096
./bin/example_gemm_bias_relu_xdl_fp16 1 1 1 3840 4096 4096 4096 4096 4096
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c0_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c1_m_n: dim 2, lengths {3840, 4096}, strides {1, 0}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
arg.c0_grid_desc_m_n_{ 3840, 4096}
arg.c1_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.27583 ms, 100.992 TFlops, 73.9688 GB/s
```
```
example/03_gemm_bias_relu/gemm_
xdl_
bias_relu.cpp
→
example/03_gemm_bias_relu/gemm_bias_relu
_xdl_fp16
.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "print.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "host_gemm.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "device_gemm_xdl_c_shuffle_bias_activation.hpp"
#include "reference_gemm_bias_activation.hpp"
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ADataType
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
F32
=
float
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// C = A * B
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// E = Relu(C + D);
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
AddRelu
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
{
__host__
__device__
void
// clang-format off
operator
()(
ck
::
half_t
&
e
,
const
ck
::
half_t
&
c
,
const
ck
::
half_t
&
d
)
const
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle_Bias_Activation
<
{
ADataType
,
// ADataType
const
ck
::
half_t
x
=
c
+
d
;
BDataType
,
// BDataType
CDataType
,
// CDataType
e
=
x
>
0
?
x
:
0
;
AccDataType
,
// AccDataType
}
ALayout
,
// ALayout
};
BLayout
,
// BLayout
CLayout
,
// CLayout
using
ADataType
=
F16
;
AElementOp
,
// AElementwiseOperation
using
BDataType
=
F16
;
BElementOp
,
// BElementwiseOperation
using
AccDataType
=
F32
;
CElementOp
,
// CElementwiseOperation
using
CShuffleDataType
=
F16
;
256
,
// BlockSize
using
DDataType
=
F16
;
256
,
// MPerBlock
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
128
,
// NPerBlock
using
EDataType
=
F16
;
4
,
// K0PerBlock
8
,
// K1
using
ALayout
=
Row
;
32
,
// MPerXDL
using
BLayout
=
Col
;
32
,
// NPerXDL
using
ELayout
=
Row
;
4
,
// MXdlPerWave
2
,
// NXdlPerWave
using
AElementOp
=
PassThrough
;
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
using
BElementOp
=
PassThrough
;
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
using
CDEElementOp
=
AddRelu
;
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
using
DeviceOpInstance
=
true
,
// ABlockLdsAddExtraM
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
BLayout
,
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
ELayout
,
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
ADataType
,
2
,
// BBlockTransferSrcVectorDim
BDataType
,
8
,
// BBlockTransferSrcScalarPerVector
AccDataType
,
8
,
// BBlockTransferDstScalarPerVector_K1
CShuffleDataType
,
true
,
// BBlockLdsAddExtraN
DsDataType
,
1
,
// CShuffleMXdlPerWavePerShuffle
EDataType
,
1
,
// CShuffleNXdlPerWavePerShuffle
AElementOp
,
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
BElementOp
,
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
CDEElementOp
,
// clang-format on
GemmDefault
,
1
,
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBiasActivation
<
ADataType
,
256
,
BDataType
,
256
,
CDataType
,
128
,
AElementOp
,
32
,
BElementOp
,
8
,
CElementOp
>
;
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
...
@@ -94,9 +117,13 @@ int main(int argc, char* argv[])
...
@@ -94,9 +117,13 @@ int main(int argc, char* argv[])
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
Stride
C
=
4096
;
ck
::
index_t
Stride
E
=
4096
;
if
(
argc
==
4
)
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
...
@@ -114,14 +141,14 @@ int main(int argc, char* argv[])
...
@@ -114,14 +141,14 @@ int main(int argc, char* argv[])
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
Stride
C
=
std
::
stoi
(
argv
[
9
]);
Stride
E
=
std
::
stoi
(
argv
[
9
]);
}
}
else
else
{
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n
0
, 1=yes)
\n
"
);
printf
(
"arg3: time kernel (0=n
o
, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, Stride
C
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, Stride
E
\n
"
);
exit
(
0
);
exit
(
0
);
}
}
...
@@ -141,17 +168,14 @@ int main(int argc, char* argv[])
...
@@ -141,17 +168,14 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
0
,
ELayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
// c0_n[n]
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
N
)}),
std
::
vector
<
std
::
size_t
>
({
1
})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c
_m_n: "
<<
c
_m_n
_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
d
_m_n: "
<<
d
_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c0
_n: "
<<
c0_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
e_m
_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
@@ -159,59 +183,59 @@ int main(int argc, char* argv[])
...
@@ -159,59 +183,59 @@ int main(int argc, char* argv[])
case
1
:
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
C
DataType
>
{
-
5
,
5
});
d_m
_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D
DataType
>
{
-
5
,
5
});
break
;
break
;
default:
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
C
DataType
>
{
0.0
,
1.0
});
d_m
_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
DataType
>
{
0.0
,
1.0
});
}
}
DeviceMem
a_
m_k_
device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_
k_n_
device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n
_device_buf
(
sizeof
(
C
DataType
)
*
c
_m_n
_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d
_device_buf
(
sizeof
(
D
DataType
)
*
d
_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_n
_device_buf
(
sizeof
(
C
DataType
)
*
c0_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e
_device_buf
(
sizeof
(
E
DataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
c0_n_device_buf
.
ToDevice
(
c0_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
c
de
_element_op
=
C
DE
ElementOp
{};
// do GEMM
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
auto
argument
=
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
static_cast
<
CDataType
*>
(
c0_n_device_buf
.
GetDeviceBuffer
()),
b_device_buf
.
GetDeviceBuffer
(),
M
,
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
N
,
e_device_buf
.
GetDeviceBuffer
(),
K
,
M
,
StrideA
,
N
,
StrideB
,
K
,
StrideC
,
StrideA
,
a_element_op
,
StrideB
,
b_element_op
,
std
::
array
<
ck
::
index_t
,
1
>
{
0
},
c_element_op
);
StrideE
,
a_element_op
,
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
{
throw
std
::
runtime_error
(
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
C
DataType
)
*
N
;
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
E
DataType
)
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
@@ -220,19 +244,37 @@ int main(int argc, char* argv[])
...
@@ -220,19 +244,37 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
if
(
do_verification
)
{
{
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
Tensor
<
AccDataType
>
c_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
auto
ref_argument
=
a_m_k
,
b_k_n
,
c_m_n
_host_result
,
c0_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{}
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/04_gemm_add_add_fastgelu/CMakeLists.txt
0 → 100644
View file @
b79df771
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp
)
example/04_gemm_
bias_relu_add
/README.md
→
example/04_gemm_
add_add_fastgelu
/README.md
View file @
b79df771
# Instructions for ```example_gemm_
xdl_bias_relu_add
```
# Instructions for ```example_gemm_
add_add_fastgelu_xdl_fp16
```
## Run ```example_gemm_
xdl_bias_relu_add
```
## Run ```example_gemm_
add_add_fastgelu_xdl_fp16
```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3:
run
kernel
# of times (>1
)
#arg3:
time
kernel
(0=no, 1=yes
)
#arg4 to
9
: M (256x), N(128x), K(32x), StrideA, StrideB, Stride
C
#arg4 to
11
: M (256x), N(128x), K(32x), StrideA, StrideB, Stride
D0, StrideD1, StrideE"
./bin/example_gemm_
xdl_bias_relu_add 0 1 5 3840 4096 4096 4096 4096 4096
./bin/example_gemm_
add_add_fastgelu_xdl_fp16 1 1 1
```
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
c0_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c1_m_n: dim 2, lengths {3840, 4096}, strides {1, 0}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
arg.c0_grid_desc_m_n_{ 3840, 4096}
arg.c1_grid_desc_m_n_{ 3840, 4096}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Warm up
1 time
Start running
5
times...
Start running
10
times...
Perf: 1.2
7583
ms, 10
0.992
TFlops,
73.9688 GB/s
Perf: 1.2
6914
ms, 10
1.525
TFlops,
100.804 GB/s, DeviceGemmMultipleD_Xdl_CShuffle<256, 256, 128, 32, 8, 8>
```
```
example/04_gemm_add_add_fastgelu/gemm_add_add_fastgelu_xdl_fp16.cpp
0 → 100644
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddAddFastGelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
4096
;
ck
::
index_t
StrideE
=
4096
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
12
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD0
=
std
::
stoi
(
argv
[
9
]);
StrideD1
=
std
::
stoi
(
argv
[
10
]);
StrideE
=
std
::
stoi
(
argv
[
11
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
Tensor
<
D1DataType
>
d1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD1
,
D1Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_m_n: "
<<
d0_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_m_n: "
<<
d1_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
2
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
D0DataType
)
*
N
+
sizeof
(
D1DataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_m_n
(
m
,
n
),
d1_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/04_gemm_bias_relu_add/CMakeLists.txt
deleted
100644 → 0
View file @
05d38218
add_example_executable
(
example_gemm_xdl_bias_relu_add gemm_xdl_bias_relu_add.cpp
)
example/04_gemm_bias_relu_add/gemm_xdl_bias_relu_add.cpp
deleted
100644 → 0
View file @
05d38218
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm_xdl_c_shuffle_bias_activation_add.hpp"
#include "reference_gemm_bias_activation_add.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
<
ADataType
,
// ADataType
BDataType
,
// BDataType
CDataType
,
// CDataType
AccDataType
,
// AccDataType
ALayout
,
// ALayout
BLayout
,
// BLayout
CLayout
,
// CLayout
AElementOp
,
// AElementwiseOperation
BElementOp
,
// BElementwiseOperation
CElementOp
,
// CElementwiseOperation
256
,
// BlockSize
256
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXDL
32
,
// NPerXDL
4
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
1
,
32
,
1
,
1
,
8
>
,
// CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmBiasActivationAdd
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideC1
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
StrideC1
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, StrideC1
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
// c0_n[n]
Tensor
<
CDataType
>
c0_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
N
)}),
std
::
vector
<
std
::
size_t
>
({
1
})));
// c1_m_n[m ,n]
Tensor
<
CDataType
>
c1_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n: "
<<
c0_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c1_m_n: "
<<
c1_m_n
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
c0_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
CDataType
>
{
-
5
,
5
});
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
CDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
c0_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
CDataType
>
{
0.0
,
1.0
});
c1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
CDataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_n_device_buf
(
sizeof
(
CDataType
)
*
c0_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c1_m_n_device_buf
(
sizeof
(
CDataType
)
*
c1_m_n
.
mDesc
.
GetElementSpace
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c_m_n_device_buf
.
ToDevice
(
c_m_n_device_result
.
mData
.
data
());
c0_n_device_buf
.
ToDevice
(
c0_n
.
mData
.
data
());
c1_m_n_device_buf
.
ToDevice
(
c1_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c0_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c1_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
StrideC1
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
M
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
CDataType
)
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
c0_n
,
c1_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/06_conv2d_fwd_bias_relu/conv2d_fwd_xdl_bias_relu.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "conv_util.hpp"
#include "device.hpp"
#include "ck/library/utility/check_err.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "device_tensor.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation.hpp"
#include "reference_conv_fwd_bias_activation.hpp"
#include "tensor_layout.hpp"
namespace
{
namespace
{
...
...
example/07_conv2d_fwd_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <initializer_list>
#include <initializer_list>
#include <cstdlib>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "check_err.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "config.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "conv_util.hpp"
#include "device.hpp"
#include "ck/library/utility/check_err.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "device_tensor.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation_add.hpp"
#include "reference_conv_fwd_bias_activation_add.hpp"
#include "tensor_layout.hpp"
namespace
{
namespace
{
...
...
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
View file @
b79df771
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <cstdlib>
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <type_traits>
#include <type_traits>
#include "c
heck_err
.hpp"
#include "c
k/ck
.hpp"
#include "c
onfig
.hpp"
#include "c
k/tensor_operation/gpu/device/tensor_layout
.hpp"
#include "c
onv_util
.hpp"
#include "c
k/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk
.hpp"
#include "
device
.hpp"
#include "
ck/tensor_operation/gpu/element/element_wise_operation
.hpp"
#include "device_tensor.hpp"
#include "
device_convnd_fwd_xdl_nhwc_kyxc_nhwk
.hpp"
#include "
ck/library/utility/check_err
.hpp"
#include "
element_wise_operation
.hpp"
#include "
ck/library/utility/conv_util
.hpp"
#include "
host_tensor
.hpp"
#include "
ck/library/host_tensor/device_memory
.hpp"
#include "host_tensor
_generat
or.hpp"
#include "
ck/library/
host_tensor
/host_tens
or.hpp"
#include "
reference_conv_fwd
.hpp"
#include "
ck/library/host_tensor/host_tensor_generator
.hpp"
#include "
tensor_layout
.hpp"
#include "
ck/library/reference_tensor_operation/cpu/reference_conv_fwd
.hpp"
namespace
{
namespace
{
...
@@ -291,8 +294,8 @@ int main(int argc, char* argv[])
...
@@ -291,8 +294,8 @@ int main(int argc, char* argv[])
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
->
GetTypeString
()
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
<<
conv
->
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
if
(
do_verification
)
{
{
...
...
Prev
1
2
3
4
5
6
…
35
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment