Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
b6bfde53
Commit
b6bfde53
authored
Oct 02, 2020
by
Chao Liu
Browse files
bring back col2im test
parent
5e88414a
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
710 additions
and
32 deletions
+710
-32
composable_kernel/include/kernel_algorithm/gridwise_col2im_eb_nchw.hpp
...rnel/include/kernel_algorithm/gridwise_col2im_eb_nchw.hpp
+133
-0
driver/CMakeLists.txt
driver/CMakeLists.txt
+4
-3
driver/include/device_col2im_eb_nchw.hpp
driver/include/device_col2im_eb_nchw.hpp
+119
-0
driver/include/host_col2im.hpp
driver/include/host_col2im.hpp
+71
-0
driver/src/col2im_driver.cpp
driver/src/col2im_driver.cpp
+383
-0
driver/src/try.cpp
driver/src/try.cpp
+0
-29
No files found.
composable_kernel/include/kernel_algorithm/gridwise_col2im_eb_nchw.hpp
0 → 100644
View file @
b6bfde53
#ifndef CK_GRIDWISE_COL2IM_EB_NCHW_HPP
#define CK_GRIDWISE_COL2IM_EB_NCHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_generic_tensor_slice_copy.hpp"
namespace
ck
{
// B = merge(N, Ho, Wo)
template
<
index_t
GridSize
,
index_t
BlockSize
,
typename
Float
,
typename
ColGlobalDesc
,
typename
ImgGlobalDesc
,
typename
FilterSizes
,
typename
OutputSizes
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
LeftPads
,
typename
RightPads
,
index_t
EPerBlock
,
index_t
BPerBlock
,
typename
BlockCopySubLengths_E_B
,
typename
BlockCopyClusterLengths_E_B
,
typename
BlockCopyThreadClusterArrangeOrder
,
typename
BlockCopySrcAccessOrder
,
typename
BlockCopyDstAccessOrder
,
index_t
BlockCopyDataPerAccess_B
>
struct
GridwiseCol2Im_eb_nchw
{
__device__
void
Run
(
const
Float
*
const
__restrict__
p_col_global
,
Float
*
const
__restrict__
p_img_global
)
const
{
constexpr
auto
col_e_b_global_desc
=
ColGlobalDesc
{};
constexpr
auto
img_n_c_hi_wi_global_desc
=
ImgGlobalDesc
{};
constexpr
index_t
N
=
img_n_c_hi_wi_global_desc
.
GetLengths
()[
0
];
constexpr
index_t
C
=
img_n_c_hi_wi_global_desc
.
GetLengths
()[
1
];
constexpr
index_t
Hi
=
img_n_c_hi_wi_global_desc
.
GetLengths
()[
2
];
constexpr
index_t
Wi
=
img_n_c_hi_wi_global_desc
.
GetLengths
()[
3
];
constexpr
index_t
Ho
=
OutputSizes
{}[
0
];
constexpr
index_t
Wo
=
OutputSizes
{}[
1
];
constexpr
index_t
Y
=
FilterSizes
{}[
0
];
constexpr
index_t
X
=
FilterSizes
{}[
1
];
constexpr
index_t
ConvStrideH
=
ConvStrides
{}[
0
];
constexpr
index_t
ConvStrideW
=
ConvStrides
{}[
1
];
constexpr
index_t
ConvDilationH
=
ConvDilations
{}[
0
];
constexpr
index_t
ConvDilationW
=
ConvDilations
{}[
1
];
constexpr
index_t
E
=
C
*
Y
*
X
;
constexpr
index_t
B
=
N
*
Ho
*
Wo
;
// sanity-check for vectorized memory load
static_assert
((
Wo
==
1
||
(
ConvStrideW
==
1
||
BlockCopyDataPerAccess_B
==
1
))
&&
(
X
==
1
||
ConvDilationW
%
BlockCopyDataPerAccess_B
==
0
),
"wrong! aligment requirement for vectorized global load of input tensor will "
"be violated"
);
// divide block work by [E, B]
static_assert
(
E
%
EPerBlock
==
0
&&
B
%
BPerBlock
==
0
,
"wrong! cannot divide work evenly among block"
);
constexpr
index_t
EBlockWork
=
E
/
EPerBlock
;
constexpr
index_t
BBlockWork
=
B
/
BPerBlock
;
constexpr
auto
block_work_desc
=
make_cluster_descriptor
(
Sequence
<
EBlockWork
,
BBlockWork
>
{});
const
auto
block_work_id
=
block_work_desc
.
CalculateClusterIndex
(
get_block_1d_id
());
const
index_t
e_block_data_on_global
=
block_work_id
[
Number
<
0
>
{}]
*
EPerBlock
;
const
index_t
b_block_data_on_global
=
block_work_id
[
Number
<
1
>
{}]
*
BPerBlock
;
// construct img_eb_global_desc
constexpr
auto
img_n_c_hip_wip_global_desc
=
transform_tensor_descriptor
(
img_n_c_hi_wi_global_desc
,
make_tuple
(
PassThrough
<
N
>
{},
PassThrough
<
C
>
{},
Pad
<
Sequence
<
Hi
,
Wi
>
,
LeftPads
,
RightPads
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{}));
constexpr
index_t
Hip
=
img_n_c_hip_wip_global_desc
.
GetLengths
()[
2
];
constexpr
index_t
Wip
=
img_n_c_hip_wip_global_desc
.
GetLengths
()[
3
];
constexpr
auto
img_n_c_y_ho_x_wo_global_desc
=
transform_tensor_descriptor
(
img_n_c_hip_wip_global_desc
,
make_tuple
(
PassThrough
<
N
>
{},
PassThrough
<
C
>
{},
Embed
<
Hip
,
Sequence
<
Y
,
Ho
>
,
Sequence
<
ConvDilationH
,
ConvStrideH
,
0
>>
{},
Embed
<
Wip
,
Sequence
<
X
,
Wo
>
,
Sequence
<
ConvDilationW
,
ConvStrideW
,
0
>>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
constexpr
auto
img_e_b_global_desc
=
transform_tensor_descriptor
(
img_n_c_y_ho_x_wo_global_desc
,
make_tuple
(
Merge
<
Sequence
<
C
,
Y
,
X
>>
{},
Merge
<
Sequence
<
N
,
Ho
,
Wo
>>
{}),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// blockwise atomic accumulation
auto
blockwise_copy
=
BlockwiseGenericTensorSliceCopy_v4
<
BlockSize
,
decltype
(
col_e_b_global_desc
),
decltype
(
img_e_b_global_desc
),
Sequence
<
EPerBlock
,
BPerBlock
>
,
BlockCopySubLengths_E_B
,
BlockCopyClusterLengths_E_B
,
BlockCopyThreadClusterArrangeOrder
,
BlockCopySrcAccessOrder
,
BlockCopyDstAccessOrder
,
1
,
1
,
BlockCopyDataPerAccess_B
,
BlockCopyDataPerAccess_B
,
AddressSpace
::
Vgpr
,
AddressSpace
::
Vgpr
,
AddressSpace
::
Global
,
InMemoryDataOperation
::
AtomicAdd
>
(
make_multi_index
(
e_block_data_on_global
,
b_block_data_on_global
),
make_multi_index
(
e_block_data_on_global
,
b_block_data_on_global
));
// blockwise copy
blockwise_copy
.
Run
(
p_col_global
,
p_img_global
);
}
};
}
// namespace ck
#endif
driver/CMakeLists.txt
View file @
b6bfde53
...
@@ -17,16 +17,17 @@ install(TARGETS host LIBRARY DESTINATION lib)
...
@@ -17,16 +17,17 @@ install(TARGETS host LIBRARY DESTINATION lib)
if
(
DEVICE_BACKEND STREQUAL
"AMD"
)
if
(
DEVICE_BACKEND STREQUAL
"AMD"
)
set
(
CONV_SOURCE src/conv_driver.cpp
)
set
(
CONV_SOURCE src/conv_driver.cpp
)
set
(
CONV_BWD_DATA_SOURCE src/conv_bwd_data_driver.cpp
)
set
(
CONV_BWD_DATA_SOURCE src/conv_bwd_data_driver.cpp
)
set
(
TRY_SOURCE src/
try
.cpp
)
set
(
TRY_SOURCE src/
col2im_driver
.cpp
)
elseif
(
DEVICE_BACKEND STREQUAL
"NVIDIA"
)
elseif
(
DEVICE_BACKEND STREQUAL
"NVIDIA"
)
set
(
CONV_SOURCE src/conv_driver.cu
)
set
(
CONV_SOURCE src/conv_driver.cu
)
set
(
CONV_BWD_DATA_SOURCE src/conv_bwd_data_driver.cu
)
set
(
CONV_BWD_DATA_SOURCE src/conv_bwd_data_driver.cu
)
set
(
TRY_SOURCE src/col2im_driver.cu
)
endif
()
endif
()
add_executable
(
conv_driver
${
CONV_SOURCE
}
)
add_executable
(
conv_driver
${
CONV_SOURCE
}
)
add_executable
(
conv_bwd_data_driver
${
CONV_BWD_DATA_SOURCE
}
)
add_executable
(
conv_bwd_data_driver
${
CONV_BWD_DATA_SOURCE
}
)
add_executable
(
try
${
TRY_SOURCE
}
)
add_executable
(
col2im_driver
${
TRY_SOURCE
}
)
target_link_libraries
(
conv_driver PRIVATE host
)
target_link_libraries
(
conv_driver PRIVATE host
)
target_link_libraries
(
conv_bwd_data_driver PRIVATE host
)
target_link_libraries
(
conv_bwd_data_driver PRIVATE host
)
target_link_libraries
(
try
PRIVATE host
)
target_link_libraries
(
col2im_driver
PRIVATE host
)
driver/include/device_col2im_eb_nchw.hpp
0 → 100644
View file @
b6bfde53
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "gridwise_operation_wrapper.hpp"
#include "gridwise_col2im_eb_nchw.hpp"
template
<
typename
T
,
typename
ColDesc
,
typename
ImgDesc
,
typename
FilterSizes
,
typename
OutputSizes
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
LeftPads
,
typename
RightPads
>
void
device_col2im_eb_nchw
(
ColDesc
,
const
Tensor
<
T
>&
col_eb
,
ImgDesc
,
Tensor
<
T
>&
img_nchw
,
FilterSizes
,
OutputSizes
,
ConvStrides
,
ConvDilations
,
LeftPads
,
RightPads
,
std
::
size_t
nrepeat
)
{
using
namespace
ck
;
constexpr
auto
col_eb_desc
=
ColDesc
{};
constexpr
auto
img_nchw_desc
=
ImgDesc
{};
constexpr
index_t
N
=
img_nchw_desc
.
GetLengths
()[
0
];
constexpr
index_t
C
=
img_nchw_desc
.
GetLengths
()[
1
];
constexpr
index_t
Hi
=
img_nchw_desc
.
GetLengths
()[
2
];
constexpr
index_t
Wi
=
img_nchw_desc
.
GetLengths
()[
3
];
constexpr
index_t
E
=
col_eb_desc
.
GetLengths
()[
0
];
constexpr
index_t
B
=
col_eb_desc
.
GetLengths
()[
1
];
std
::
size_t
data_sz
=
sizeof
(
T
);
DeviceMem
col_eb_device_buf
(
data_sz
*
col_eb
.
mDesc
.
GetElementSpace
());
DeviceMem
img_nchw_device_buf
(
data_sz
*
img_nchw
.
mDesc
.
GetElementSpace
());
col_eb_device_buf
.
ToDevice
(
col_eb
.
mData
.
data
());
img_nchw_device_buf
.
ToDevice
(
img_nchw
.
mData
.
data
());
#if 1
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
EPerBlock
=
128
;
constexpr
index_t
BPerBlock
=
128
;
using
BlockCopySubLengths_E_B
=
Sequence
<
8
,
8
>
;
using
BlockCopyClusterLengths_E_B
=
Sequence
<
16
,
16
>
;
using
BlockCopyThreadClusterArrangeOrder
=
Sequence
<
0
,
1
>
;
// [E, B]
using
BlockCopySrcAccessOrder
=
Sequence
<
0
,
1
>
;
// [E, B]
using
BlockCopyDstAccessOrder
=
Sequence
<
0
,
1
>
;
// [E, B]
constexpr
index_t
BlockCopyDataPerAccess_B
=
1
;
#endif
constexpr
index_t
GridSize
=
((
E
+
EPerBlock
-
1
)
/
EPerBlock
)
*
((
B
+
BPerBlock
-
1
)
/
BPerBlock
);
printf
(
"%s: BlockSize %u, GridSize %u
\n
"
,
__func__
,
BlockSize
,
GridSize
);
constexpr
auto
gridwise_col2im
=
GridwiseCol2Im_eb_nchw
<
GridSize
,
BlockSize
,
T
,
ColDesc
,
ImgDesc
,
FilterSizes
,
OutputSizes
,
ConvStrides
,
ConvDilations
,
LeftPads
,
RightPads
,
EPerBlock
,
BPerBlock
,
BlockCopySubLengths_E_B
,
BlockCopyClusterLengths_E_B
,
BlockCopyThreadClusterArrangeOrder
,
BlockCopySrcAccessOrder
,
BlockCopyDstAccessOrder
,
BlockCopyDataPerAccess_B
>
{};
for
(
index_t
i
=
0
;
i
<
1
;
++
i
)
{
std
::
cout
<<
"Start running "
<<
nrepeat
<<
" times..."
<<
std
::
endl
;
KernelTimer
timer
;
timer
.
Start
();
for
(
index_t
j
=
0
;
j
<
nrepeat
;
++
j
)
{
launch_kernel
(
run_gridwise_operation
<
decltype
(
gridwise_col2im
),
const
T
*
const
__restrict__
,
T
*
const
__restrict__
>
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
0
,
const_cast
<
const
T
*
const
__restrict__
>
(
static_cast
<
T
*>
(
col_eb_device_buf
.
GetDeviceBuffer
())),
const_cast
<
T
*
const
__restrict__
>
(
static_cast
<
T
*>
(
img_nchw_device_buf
.
GetDeviceBuffer
())));
}
timer
.
End
();
float
ave_time
=
timer
.
GetElapsedTime
()
/
nrepeat
;
std
::
cout
<<
"Average time : "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
}
img_nchw_device_buf
.
FromDevice
(
img_nchw
.
mData
.
data
());
}
driver/include/host_col2im.hpp
0 → 100644
View file @
b6bfde53
#pragma once
#include "host_tensor.hpp"
template
<
typename
T
,
typename
FilterSizes
,
typename
OutputSizes
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
LeftPads
,
typename
RightPads
>
void
host_col2im
(
const
Tensor
<
T
>&
in_eb
,
Tensor
<
T
>&
in_nchw
,
FilterSizes
,
OutputSizes
,
ConvStrides
,
ConvDilations
,
LeftPads
,
RightPads
)
{
using
namespace
ck
;
int
N
=
in_nchw
.
mDesc
.
GetLengths
()[
0
];
int
C
=
in_nchw
.
mDesc
.
GetLengths
()[
1
];
int
HI
=
in_nchw
.
mDesc
.
GetLengths
()[
2
];
int
WI
=
in_nchw
.
mDesc
.
GetLengths
()[
3
];
int
Y
=
FilterSizes
{}[
0
];
int
X
=
FilterSizes
{}[
1
];
int
HO
=
OutputSizes
{}[
0
];
int
WO
=
OutputSizes
{}[
1
];
auto
f
=
[
&
](
auto
n
,
auto
c
,
auto
hi
,
auto
wi
)
{
double
v
=
0
;
for
(
int
y
=
0
;
y
<
Y
;
++
y
)
{
int
h_tmp
=
hi
+
LeftPads
{}[
0
]
-
y
*
ConvDilations
{}[
0
];
if
(
h_tmp
>=
0
&&
h_tmp
<
HI
&&
h_tmp
%
ConvStrides
{}[
0
]
==
0
)
{
int
ho
=
h_tmp
/
ConvStrides
{}[
0
];
for
(
int
x
=
0
;
x
<
X
;
++
x
)
{
int
w_tmp
=
wi
+
LeftPads
{}[
1
]
-
x
*
ConvDilations
{}[
1
];
if
(
w_tmp
>=
0
&&
w_tmp
<
WI
&&
w_tmp
%
ConvStrides
{}[
1
]
==
0
)
{
int
wo
=
w_tmp
/
ConvStrides
{}[
1
];
int
e
=
c
*
(
Y
*
X
)
+
y
*
X
+
x
;
int
b
=
n
*
(
HO
*
WO
)
+
ho
*
WO
+
wo
;
v
+=
in_eb
(
e
,
b
);
}
}
}
}
in_nchw
(
n
,
c
,
hi
,
wi
)
=
v
;
};
auto
f_par
=
make_ParallelTensorFunctor
(
f
,
in_nchw
.
mDesc
.
GetLengths
()[
0
],
in_nchw
.
mDesc
.
GetLengths
()[
1
],
in_nchw
.
mDesc
.
GetLengths
()[
2
],
in_nchw
.
mDesc
.
GetLengths
()[
3
]);
f_par
(
std
::
thread
::
hardware_concurrency
());
}
driver/src/col2im_driver.cpp
0 → 100644
View file @
b6bfde53
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor_generator.hpp"
#include "conv_common.hpp"
#include "host_conv.hpp"
#include "device_tensor.hpp"
#include "host_col2im.hpp"
#include "device_col2im_eb_nchw.hpp"
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
;
#if 1
constexpr
index_t
N
=
2
;
constexpr
index_t
C
=
8
;
constexpr
index_t
HI
=
8
;
constexpr
index_t
WI
=
8
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
4
;
constexpr
index_t
X
=
4
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
1
,
1
>
;
using
RightPads
=
Sequence
<
2
,
2
>
;
#elif 0
// 3x3, 34x34
constexpr
index_t
N
=
64
;
constexpr
index_t
C
=
256
;
constexpr
index_t
HI
=
34
;
constexpr
index_t
WI
=
34
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
3
;
constexpr
index_t
X
=
3
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 8x8 image
// cudnn@V100 68%, ck@V100 72%, ck@P100 52%, ck@VII 42%
constexpr
index_t
N
=
64
;
constexpr
index_t
C
=
1536
;
constexpr
index_t
HI
=
8
;
constexpr
index_t
WI
=
8
;
constexpr
index_t
K
=
256
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 8x8 image
// cudnn@V100 77%, ck@V100 76%, ck@P100 79%, ck@VII 51%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
2048
;
constexpr
index_t
HI
=
8
;
constexpr
index_t
WI
=
8
;
constexpr
index_t
K
=
384
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 7x7 image
// cudnn@V100 82%, ck@V100 76%, ck@P100 67%, ck@VII 64%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
832
;
constexpr
index_t
HI
=
7
;
constexpr
index_t
WI
=
7
;
constexpr
index_t
K
=
384
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 8x8 image
// cudnn@V100 83%, ck@V100 75%, ck@P100 78%, ck@VII 65%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
1280
;
constexpr
index_t
HI
=
8
;
constexpr
index_t
WI
=
8
;
constexpr
index_t
K
=
384
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 14x14 image
// cudnn@V100 62%, ck@V100 68%, ck@P100 70%, ck@VII 50%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
512
;
constexpr
index_t
HI
=
14
;
constexpr
index_t
WI
=
14
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 8x8 image
// cudnn@V100 74%, ck@V100 57%, ck@P100 78%, ck@VII 61%
constexpr
index_t
N
=
64
;
constexpr
index_t
C
=
1536
;
constexpr
index_t
HI
=
8
;
constexpr
index_t
WI
=
8
;
constexpr
index_t
K
=
384
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 28x28 image
// cudnn@V100 86%, ck@V100 84%, ck@P100 80%, ck@VII 69%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
256
;
constexpr
index_t
HI
=
28
;
constexpr
index_t
WI
=
28
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 7x7 image
// cudnn@V100 71%, ck@V100 55%, ck@P100 70%, ck@VII 62%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
832
;
constexpr
index_t
HI
=
7
;
constexpr
index_t
WI
=
7
;
constexpr
index_t
K
=
256
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 17x17 input
// cudnn@V100 81%, ck@V100 76%, ck@P100 70%, ck@VII 76%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
768
;
constexpr
index_t
HI
=
17
;
constexpr
index_t
WI
=
17
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 14x14 image
// cudnn@V100 73%, ck@V100 71%, ck@P100 70%, ck@VII 64%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
528
;
constexpr
index_t
HI
=
14
;
constexpr
index_t
WI
=
14
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 14x14 image
// cudnn@V100 73%, ck@V100 72%, ck@P100 79%, ck@VII 75%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
528
;
constexpr
index_t
HI
=
14
;
constexpr
index_t
WI
=
14
;
constexpr
index_t
K
=
256
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 1x1 filter, 7x7 image
// cudnn@V100 49%, ck@V100 50%, ck@P100 61%, ck@VII 52%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
832
;
constexpr
index_t
HI
=
7
;
constexpr
index_t
WI
=
7
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 3x3 filter, 2x2 stride, 35x35 input, 17x17 output
// cudnn@V100 90%, ck@V100 93%, ck@P100 83%, ck@VII 81%
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
288
;
constexpr
index_t
HI
=
35
;
constexpr
index_t
WI
=
35
;
constexpr
index_t
K
=
384
;
constexpr
index_t
Y
=
3
;
constexpr
index_t
X
=
3
;
using
ConvStrides
=
Sequence
<
2
,
2
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
0
>
;
using
RightPads
=
Sequence
<
0
,
0
>
;
#elif 0
// 5x5 filter, 2x2 pad, 7x7 input
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
48
;
constexpr
index_t
HI
=
7
;
constexpr
index_t
WI
=
7
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
5
;
constexpr
index_t
X
=
5
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
2
,
2
>
;
using
RightPads
=
Sequence
<
2
,
2
>
;
#elif 0
// 7x1 filter, 3x0 pad, 17x17 input
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
128
;
constexpr
index_t
HI
=
17
;
constexpr
index_t
WI
=
17
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
7
;
constexpr
index_t
X
=
1
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
3
,
0
>
;
using
RightPads
=
Sequence
<
3
,
0
>
;
#elif 1
// 1x7 filter, 0x3 pad, 17x17 input
constexpr
index_t
N
=
128
;
constexpr
index_t
C
=
128
;
constexpr
index_t
HI
=
17
;
constexpr
index_t
WI
=
17
;
constexpr
index_t
K
=
128
;
constexpr
index_t
Y
=
1
;
constexpr
index_t
X
=
7
;
using
ConvStrides
=
Sequence
<
1
,
1
>
;
using
ConvDilations
=
Sequence
<
1
,
1
>
;
using
LeftPads
=
Sequence
<
0
,
3
>
;
using
RightPads
=
Sequence
<
0
,
3
>
;
#endif
constexpr
auto
img_nchw_desc
=
make_native_tensor_descriptor_packed
(
Sequence
<
N
,
C
,
HI
,
WI
>
{});
constexpr
auto
wei_kcyx_desc
=
make_native_tensor_descriptor_packed
(
Sequence
<
K
,
C
,
Y
,
X
>
{});
constexpr
auto
out_nkhw_desc
=
get_convolution_output_default_4d_tensor_descriptor
(
img_nchw_desc
,
wei_kcyx_desc
,
ConvStrides
{},
ConvDilations
{},
LeftPads
{},
RightPads
{});
constexpr
index_t
HO
=
out_nkhw_desc
.
GetLengths
()[
2
];
constexpr
index_t
WO
=
out_nkhw_desc
.
GetLengths
()[
3
];
constexpr
auto
col_eb_desc
=
make_native_tensor_descriptor_packed
(
Sequence
<
C
*
Y
*
X
,
N
*
HO
*
WO
>
{});
using
FilterSizes
=
Sequence
<
Y
,
X
>
;
using
OutputSizes
=
Sequence
<
HO
,
WO
>
;
ostream_tensor_descriptor
(
col_eb_desc
,
std
::
cout
<<
"col_eb_desc: "
);
ostream_tensor_descriptor
(
img_nchw_desc
,
std
::
cout
<<
"img_nchw_desc: "
);
print_array
(
"FilterSizes"
,
FilterSizes
{});
print_array
(
"OutputSizes"
,
OutputSizes
{});
print_array
(
"LeftPads"
,
LeftPads
{});
print_array
(
"LeftPads"
,
LeftPads
{});
print_array
(
"RightPads"
,
RightPads
{});
print_array
(
"ConvStrides"
,
ConvStrides
{});
print_array
(
"ConvDilations"
,
ConvDilations
{});
Tensor
<
float
>
col_eb
(
make_HostTensorDescriptor
(
col_eb_desc
));
Tensor
<
float
>
img_nchw_host
(
make_HostTensorDescriptor
(
img_nchw_desc
));
Tensor
<
float
>
img_nchw_device
(
make_HostTensorDescriptor
(
img_nchw_desc
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
if
(
argc
!=
3
)
{
printf
(
"arg1: do_verification, arg2: nrepeat
\n
"
);
exit
(
1
);
}
bool
do_verification
=
atoi
(
argv
[
1
]);
std
::
size_t
nrepeat
=
atoi
(
argv
[
2
]);
if
(
do_verification
)
{
#if 0
col_eb.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
#else
col_eb
.
GenerateTensorValue
(
GeneratorTensor_2
{
-
5
,
5
},
num_thread
);
#endif
}
device_col2im_eb_nchw
(
col_eb_desc
,
col_eb
,
img_nchw_desc
,
img_nchw_device
,
FilterSizes
{},
OutputSizes
{},
ConvStrides
{},
ConvDilations
{},
LeftPads
{},
RightPads
{},
nrepeat
);
if
(
do_verification
)
{
host_col2im
(
col_eb
,
img_nchw_host
,
FilterSizes
{},
OutputSizes
{},
ConvStrides
{},
ConvDilations
{},
LeftPads
{},
RightPads
{});
check_error
(
img_nchw_host
,
img_nchw_device
);
#if 0
LogRange(std::cout << "col_eb : ", col_eb.mData, ",") << std::endl;
LogRange(std::cout << "img_nchw_host : ", img_nchw_host.mData, ",") << std::endl;
LogRange(std::cout << "img_nchw_device : ", img_nchw_device.mData, ",") << std::endl;
#endif
}
}
driver/src/try.cpp
deleted
100644 → 0
View file @
5e88414a
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor_generator.hpp"
#include "conv_common.hpp"
#include "host_conv.hpp"
#include "device_tensor.hpp"
#include "device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp"
#include "device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
;
auto
idx1
=
std
::
array
<
index_t
,
2
>
{{
1
,
0
}};
auto
idx2
=
Array
<
index_t
,
2
>
{{
1
,
0
}};
auto
idx3
=
MultiIndex
<
2
>
{{
1
,
0
}};
auto
idx0
=
MultiIndex
<
2
>
{{
1
,
0
}};
print_array
(
"idx2"
,
idx2
);
print_array
(
"idx3"
,
idx2
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment