"vscode:/vscode.git/clone" did not exist on "47cb75a3f7ae295ea6fb2f7ab856962aaabedac3"
Commit b411ee3b authored by myamlak's avatar myamlak
Browse files

Cleaning part II

parent c58d92d3
...@@ -140,7 +140,7 @@ class SimpleAppArgs ...@@ -140,7 +140,7 @@ class SimpleAppArgs
int processArgs(int argc, char* argv[]) int processArgs(int argc, char* argv[])
{ {
unsigned int ch; int ch;
while(1) while(1)
{ {
......
...@@ -80,8 +80,8 @@ static void pool_host_verify(const Tensor<InDataType>& in, ...@@ -80,8 +80,8 @@ static void pool_host_verify(const Tensor<InDataType>& in,
for(int x = 0; x < window_spatial_lengths[1]; ++x) for(int x = 0; x < window_spatial_lengths[1]; ++x)
{ {
int wi = wo * window_strides[1] + x - in_left_pads[1]; int wi = wo * window_strides[1] + x - in_left_pads[1];
if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < ck::type_convert<int>(in.mDesc.GetLengths()[2]) && wi >= 0 &&
wi < in.mDesc.GetLengths()[3]) wi < ck::type_convert<int>(in.mDesc.GetLengths()[3]))
{ {
AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi)); AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
......
...@@ -131,7 +131,7 @@ int main(int argc, char* argv[]) ...@@ -131,7 +131,7 @@ int main(int argc, char* argv[])
std::size_t flop = 0, num_btype = 0; std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor( a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{}))); gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{})));
...@@ -168,7 +168,7 @@ int main(int argc, char* argv[]) ...@@ -168,7 +168,7 @@ int main(int argc, char* argv[])
} }
} }
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
a_tensors_device.emplace_back( a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSpace())); std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSpace()));
...@@ -213,7 +213,7 @@ int main(int argc, char* argv[]) ...@@ -213,7 +213,7 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data()); c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());
auto ref_gemm = ReferenceGemmInstance{}; auto ref_gemm = ReferenceGemmInstance{};
......
...@@ -698,7 +698,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -698,7 +698,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
} }
// Gridwise GEMM size // Gridwise GEMM size
for(int i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++) for(int i = 0; i < ck::type_convert<int>(arg.a_grid_desc_k0_m_k1_container_.size()); i++)
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i], arg.b_grid_desc_k0_n_k1_container_[i],
......
...@@ -1413,7 +1413,7 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho ...@@ -1413,7 +1413,7 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
} }
// Gridwise GEMM size // Gridwise GEMM size
for(int i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++) for(int i = 0; i < ck::type_convert<int>(arg.a_grid_desc_k0_m_k1_container_.size()); i++)
{ {
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i], if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i], arg.b_grid_desc_k0_n_k1_container_[i],
......
...@@ -862,17 +862,17 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -862,17 +862,17 @@ struct DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
// Input tensors can't be bigger than 2GB each. // Input tensors can't be bigger than 2GB each.
constexpr std::size_t GB2 = 2 * 1e9; constexpr std::size_t GB2 = 1e9;
if(arg.a_grid_desc_k0_m_k1_.GetElementSpaceSize() > GB2) if(ck::type_convert<std::size_t>(arg.a_grid_desc_k0_m_k1_.GetElementSpaceSize()) > GB2)
{ {
return false; return false;
} }
if(arg.b_grid_desc_k0_n_k1_.GetElementSpaceSize() > GB2) if(ck::type_convert<std::size_t>(arg.b_grid_desc_k0_n_k1_.GetElementSpaceSize()) > GB2)
{ {
return false; return false;
} }
if(arg.c_grid_desc_m_n_.GetElementSpaceSize() > GB2) if(ck::type_convert<std::size_t>(arg.c_grid_desc_m_n_.GetElementSpaceSize()) > GB2)
{ {
return false; return false;
} }
......
...@@ -290,17 +290,18 @@ struct DeviceGroupedGemmXdl ...@@ -290,17 +290,18 @@ struct DeviceGroupedGemmXdl
{ {
grid_size_ = 0; grid_size_ = 0;
group_count_ = static_cast<int>(gemm_shapes.size()); group_count_ = ck::type_convert<ck::index_t>(gemm_shapes.size());
if(!(group_count_ == p_a.size() && group_count_ == p_b.size() && if(!(group_count_ == ck::type_convert<ck::index_t>(p_a.size()) &&
group_count_ == p_c.size())) group_count_ == ck::type_convert<ck::index_t>(p_b.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_c.size())))
{ {
throw std::runtime_error("wrong! group_count_ != P_a/b/c.size"); throw std::runtime_error("wrong! group_count_ != P_a/b/c.size");
} }
gemm_desc_kernel_arg_.reserve(group_count_); gemm_desc_kernel_arg_.reserve(group_count_);
for(index_t i = 0; i < gemm_shapes.size(); i++) for(index_t i = 0; i < ck::type_convert<index_t>(gemm_shapes.size()); i++)
{ {
const index_t M = gemm_shapes[i].M; const index_t M = gemm_shapes[i].M;
const index_t N = gemm_shapes[i].N; const index_t N = gemm_shapes[i].N;
...@@ -487,7 +488,7 @@ struct DeviceGroupedGemmXdl ...@@ -487,7 +488,7 @@ struct DeviceGroupedGemmXdl
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(arg.gemm_desc_kernel_arg_.size() != arg.group_count_) if(ck::type_convert<ck::index_t>(arg.gemm_desc_kernel_arg_.size()) != arg.group_count_)
return false; return false;
else else
return true; return true;
......
...@@ -211,7 +211,7 @@ struct ReductionHost ...@@ -211,7 +211,7 @@ struct ReductionHost
AccDataType accuVal = ReduceOpZeroVal<AccDataType, ReduceOpId>(); AccDataType accuVal = ReduceOpZeroVal<AccDataType, ReduceOpId>();
IndexDataType accuIndex = 0; IndexDataType accuIndex = 0;
for(IndexDataType i = 0; i < reduce_dim_indexes.size(); i++) for(IndexDataType i = 0; i < ck::type_convert<IndexDataType>(reduce_dim_indexes.size()); i++)
{ {
auto offset_reduce = auto offset_reduce =
get_offset_from_index<NumReduceDim>(reduceStrides, reduce_dim_indexes[i]); get_offset_from_index<NumReduceDim>(reduceStrides, reduce_dim_indexes[i]);
...@@ -246,7 +246,7 @@ struct ReductionHost ...@@ -246,7 +246,7 @@ struct ReductionHost
auto offset_invariant = auto offset_invariant =
get_offset_from_index<NumInvariantDim>(invariantStrides, invariant_index); get_offset_from_index<NumInvariantDim>(invariantStrides, invariant_index);
for(IndexDataType i = 0; i < reduce_dim_indexes.size(); i++) for(IndexDataType i = 0; i < ck::type_convert<IndexDataType>(reduce_dim_indexes.size()); i++)
{ {
auto offset_reduce = auto offset_reduce =
get_offset_from_index<NumReduceDim>(reduceStrides, reduce_dim_indexes[i]); get_offset_from_index<NumReduceDim>(reduceStrides, reduce_dim_indexes[i]);
......
...@@ -316,7 +316,7 @@ float check_error(const Tensor<T>& ref, const Tensor<T>& result) ...@@ -316,7 +316,7 @@ float check_error(const Tensor<T>& ref, const Tensor<T>& result)
constexpr float eps = 1e-10; constexpr float eps = 1e-10;
for(int i = 0; i < ref.mData.size(); ++i) for(int i = 0; i < ck::type_convert<int>(ref.mData.size()); ++i)
{ {
float ref_v = ck::type_convert<float>(ref.mData[i]); float ref_v = ck::type_convert<float>(ref.mData[i]);
float result_v = ck::type_convert<float>(result.mData[i]); float result_v = ck::type_convert<float>(result.mData[i]);
......
...@@ -70,18 +70,18 @@ struct ReferenceConvBwdWeight : public device::BaseOperator ...@@ -70,18 +70,18 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
constexpr auto I1 = Number<1>{}; constexpr auto I1 = Number<1>{};
auto f_kcyx = [&](auto k, auto c, auto y, auto x) { auto f_kcyx = [&](auto k, auto c, auto y, auto x) {
float v_acc = 0; float v_acc = 0;
for(int n = 0; n < arg.out_n_k_ho_wo_.mDesc.GetLengths()[0]; ++n) for(int n = 0; n < ck::type_convert<int>(arg.out_n_k_ho_wo_.mDesc.GetLengths()[0]); ++n)
{ {
for(int ho = 0; ho < arg.out_n_k_ho_wo_.mDesc.GetLengths()[2]; ++ho) for(int ho = 0; ho < ck::type_convert<int>(arg.out_n_k_ho_wo_.mDesc.GetLengths()[2]); ++ho)
{ {
int hi = ho * arg.conv_strides_[I0] + y * arg.conv_dilations_[I0] - int hi = ho * arg.conv_strides_[I0] + y * arg.conv_dilations_[I0] -
arg.in_left_pads_[I0]; arg.in_left_pads_[I0];
for(int wo = 0; wo < arg.out_n_k_ho_wo_.mDesc.GetLengths()[3]; ++wo) for(int wo = 0; wo < ck::type_convert<int>(arg.out_n_k_ho_wo_.mDesc.GetLengths()[3]); ++wo)
{ {
int wi = wo * arg.conv_strides_[I1] + x * arg.conv_dilations_[I1] - int wi = wo * arg.conv_strides_[I1] + x * arg.conv_dilations_[I1] -
arg.in_left_pads_[I1]; arg.in_left_pads_[I1];
if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < ck::type_convert<int>(arg.in_n_c_hi_wi_.mDesc.GetLengths()[2]) &&
wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]) wi >= 0 && wi < ck::type_convert<int>(arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]))
{ {
float v_out; float v_out;
float v_in; float v_in;
......
...@@ -73,18 +73,18 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator ...@@ -73,18 +73,18 @@ struct ReferenceConvFwd_Bias_Activation : public device::BaseOperator
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) { auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
float v_acc = 0; float v_acc = 0;
for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c) for(int c = 0; c < ck::type_convert<int>(arg.wei_k_c_y_x_.mDesc.GetLengths()[1]); ++c)
{ {
for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y) for(int y = 0; y < ck::type_convert<int>(arg.wei_k_c_y_x_.mDesc.GetLengths()[2]); ++y)
{ {
int hi = ho * arg.conv_strides_[0] + y * arg.conv_dilations_[0] - int hi = ho * arg.conv_strides_[0] + y * arg.conv_dilations_[0] -
arg.in_left_pads_[0]; arg.in_left_pads_[0];
for(int x = 0; x < arg.wei_k_c_y_x_.mDesc.GetLengths()[3]; ++x) for(int x = 0; x < ck::type_convert<int>(arg.wei_k_c_y_x_.mDesc.GetLengths()[3]); ++x)
{ {
int wi = wo * arg.conv_strides_[1] + x * arg.conv_dilations_[1] - int wi = wo * arg.conv_strides_[1] + x * arg.conv_dilations_[1] -
arg.in_left_pads_[1]; arg.in_left_pads_[1];
if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < ck::type_convert<int>(arg.in_n_c_hi_wi_.mDesc.GetLengths()[2]) && wi >= 0 &&
wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]) wi < ck::type_convert<int>(arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]))
{ {
float v_in; float v_in;
float v_wei; float v_wei;
......
...@@ -76,18 +76,18 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator ...@@ -76,18 +76,18 @@ struct ReferenceConvFwd_Bias_Activation_Add : public device::BaseOperator
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) { auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
float v_acc = 0; float v_acc = 0;
for(int c = 0; c < arg.wei_k_c_y_x_.mDesc.GetLengths()[1]; ++c) for(int c = 0; c < ck::type_convert<int>(arg.wei_k_c_y_x_.mDesc.GetLengths()[1]); ++c)
{ {
for(int y = 0; y < arg.wei_k_c_y_x_.mDesc.GetLengths()[2]; ++y) for(int y = 0; y < ck::type_convert<int>(arg.wei_k_c_y_x_.mDesc.GetLengths()[2]); ++y)
{ {
int hi = ho * arg.conv_strides_[0] + y * arg.conv_dilations_[0] - int hi = ho * arg.conv_strides_[0] + y * arg.conv_dilations_[0] -
arg.in_left_pads_[0]; arg.in_left_pads_[0];
for(int x = 0; x < arg.wei_k_c_y_x_.mDesc.GetLengths()[3]; ++x) for(int x = 0; x < ck::type_convert<int>(arg.wei_k_c_y_x_.mDesc.GetLengths()[3]); ++x)
{ {
int wi = wo * arg.conv_strides_[1] + x * arg.conv_dilations_[1] - int wi = wo * arg.conv_strides_[1] + x * arg.conv_dilations_[1] -
arg.in_left_pads_[1]; arg.in_left_pads_[1];
if(hi >= 0 && hi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[2] && wi >= 0 && if(hi >= 0 && hi < ck::type_convert<int>(arg.in_n_c_hi_wi_.mDesc.GetLengths()[2]) && wi >= 0 &&
wi < arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]) wi < ck::type_convert<int>(arg.in_n_c_hi_wi_.mDesc.GetLengths()[3]))
{ {
float v_in; float v_in;
float v_wei; float v_wei;
......
...@@ -25,7 +25,7 @@ std::size_t HostTensorDescriptor::GetElementSize() const ...@@ -25,7 +25,7 @@ std::size_t HostTensorDescriptor::GetElementSize() const
std::size_t HostTensorDescriptor::GetElementSpace() const std::size_t HostTensorDescriptor::GetElementSpace() const
{ {
std::size_t space = 1; std::size_t space = 1;
for(int i = 0; i < mLens.size(); ++i) for(int i = 0; i < ck::type_convert<int>(mLens.size()); ++i)
{ {
space += (mLens[i] - 1) * mStrides[i]; space += (mLens[i] - 1) * mStrides[i];
} }
...@@ -68,7 +68,7 @@ void ostream_HostTensorDescriptor(const HostTensorDescriptor& desc, std::ostream ...@@ -68,7 +68,7 @@ void ostream_HostTensorDescriptor(const HostTensorDescriptor& desc, std::ostream
// FIXME: remove // FIXME: remove
void bf16_to_f32_(const Tensor<ck::bhalf_t>& src, Tensor<float>& dst) void bf16_to_f32_(const Tensor<ck::bhalf_t>& src, Tensor<float>& dst)
{ {
for(int i = 0; i < src.mData.size(); ++i) for(int i = 0; i < ck::type_convert<int>(src.mData.size()); ++i)
dst.mData[i] = ck::type_convert<float>(src.mData[i]); dst.mData[i] = ck::type_convert<float>(src.mData[i]);
} }
#endif #endif
...@@ -222,7 +222,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result) ...@@ -222,7 +222,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{ {
float max_diff = 1e-6; float max_diff = 1e-6;
for(int i = 0; i < ref.mData.size(); ++i) for(int i = 0; i < ck::type_convert<int>(ref.mData.size()); ++i)
{ {
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i])); float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff) if(max_diff < diff)
...@@ -236,16 +236,16 @@ template <typename DataType> ...@@ -236,16 +236,16 @@ template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc) void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{ {
std::cout << "["; std::cout << "[";
for(int n = 0; n < nhwc.mDesc.GetLengths()[0]; n++) for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
{ {
std::cout << "["; std::cout << "[";
for(int hi = 0; hi < nhwc.mDesc.GetLengths()[2]; hi++) for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
{ {
std::cout << "["; std::cout << "[";
for(int wi = 0; wi < nhwc.mDesc.GetLengths()[3]; wi++) for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
{ {
std::cout << "["; std::cout << "[";
for(int c = 0; c < nhwc.mDesc.GetLengths()[1]; c++) for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
{ {
std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " "; std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << " ";
} }
......
...@@ -71,7 +71,7 @@ void profile_grouped_gemm_impl(int do_verification, ...@@ -71,7 +71,7 @@ void profile_grouped_gemm_impl(int do_verification,
} }
}; };
int group_count = Ms.size(); std::size_t group_count = Ms.size();
if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() && if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
group_count == StrideBs.size() && group_count == StrideCs.size())) group_count == StrideBs.size() && group_count == StrideCs.size()))
...@@ -83,7 +83,7 @@ void profile_grouped_gemm_impl(int do_verification, ...@@ -83,7 +83,7 @@ void profile_grouped_gemm_impl(int do_verification,
std::vector<Tensor<BDataType>> b_k_n; std::vector<Tensor<BDataType>> b_k_n;
std::vector<Tensor<CDataType>> c_m_n_device_results; std::vector<Tensor<CDataType>> c_m_n_device_results;
for(int i = 0; i < Ms.size(); i++) for(int i = 0; i < ck::type_convert<int>(Ms.size()); i++)
{ {
a_m_k.push_back( a_m_k.push_back(
Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{}))); Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
...@@ -144,7 +144,7 @@ void profile_grouped_gemm_impl(int do_verification, ...@@ -144,7 +144,7 @@ void profile_grouped_gemm_impl(int do_verification,
gemm_shapes.reserve(group_count); gemm_shapes.reserve(group_count);
for(int i = 0; i < group_count; i++) for(int i = 0; i < ck::type_convert<int>(group_count); i++)
{ {
a_device_buf.emplace_back( a_device_buf.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace())); std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()));
...@@ -234,7 +234,7 @@ void profile_grouped_gemm_impl(int do_verification, ...@@ -234,7 +234,7 @@ void profile_grouped_gemm_impl(int do_verification,
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat); float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = 0, num_btype = 0; std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i]; flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];
...@@ -258,7 +258,7 @@ void profile_grouped_gemm_impl(int do_verification, ...@@ -258,7 +258,7 @@ void profile_grouped_gemm_impl(int do_verification,
if(do_verification) if(do_verification)
{ {
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data()); c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
......
...@@ -186,7 +186,7 @@ class AppArgs ...@@ -186,7 +186,7 @@ class AppArgs
int processArgs(int argc, char* argv[]) int processArgs(int argc, char* argv[])
{ {
unsigned int ch; int ch;
optind++; // to skip the "reduce" module name optind++; // to skip the "reduce" module name
......
...@@ -45,7 +45,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result) ...@@ -45,7 +45,7 @@ static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{ {
float max_diff = 1e-6; float max_diff = 1e-6;
for(int i = 0; i < ref.mData.size(); ++i) for(int i = 0; i < ck::type_convert<int>(ref.mData.size()); ++i)
{ {
float diff = std::abs(double(ref.mData[i]) - double(result.mData[i])); float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
if(max_diff < diff) if(max_diff < diff)
......
...@@ -104,7 +104,7 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr) ...@@ -104,7 +104,7 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
b_tensors_device.reserve(group_count); b_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count); c_tensors_device.reserve(group_count);
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
a_tensors.emplace_back(Tensor<ADataType>(f_host_tensor_descriptor( a_tensors.emplace_back(Tensor<ADataType>(f_host_tensor_descriptor(
gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{}))); gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{})));
...@@ -119,7 +119,7 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr) ...@@ -119,7 +119,7 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}); b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
} }
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
a_tensors_device.emplace_back( a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize())); std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize()));
...@@ -147,7 +147,7 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr) ...@@ -147,7 +147,7 @@ bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
invoker_ptr->Run(argument_ptr.get()); invoker_ptr->Run(argument_ptr.get());
for(int i = 0; i < gemm_shapes.size(); i++) for(int i = 0; i < ck::type_convert<int>(gemm_shapes.size()); i++)
{ {
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data()); c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());
......
...@@ -460,7 +460,7 @@ class SimpleAppArgs ...@@ -460,7 +460,7 @@ class SimpleAppArgs
int processArgs(int argc, char* argv[]) int processArgs(int argc, char* argv[])
{ {
unsigned int ch; int ch;
while(1) while(1)
{ {
......
...@@ -9,7 +9,7 @@ namespace reduce_util { ...@@ -9,7 +9,7 @@ namespace reduce_util {
template <typename T> template <typename T>
void to_f32_vector(const Tensor<T>& src, Tensor<float>& dst) void to_f32_vector(const Tensor<T>& src, Tensor<float>& dst)
{ {
for(int i = 0; i < src.mData.size(); ++i) for(int i = 0; i < ck::type_convert<int>(src.mData.size()); ++i)
dst.mData[i] = type_convert<float>(src.mData[i]); dst.mData[i] = type_convert<float>(src.mData[i]);
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment