Commit b2d5cf8a authored by aska-0096's avatar aska-0096
Browse files

GQA-4 example

parent 73e475d8
Pipeline #660 failed with stages
in 0 seconds
......@@ -11,6 +11,7 @@ if(GPU_TARGETS MATCHES "gfx1100" OR GPU_TARGETS MATCHES "gfx1101" OR GPU_TARGETS
add_example_executable(example_self_attention_forward_wmma_fp16 self_attention_forward_wmma_fp16.cpp)
add_example_executable(example_cross_attention_forward_wmma_fp16 cross_attention_forward_wmma_fp16.cpp)
add_example_executable(example_multi_query_attention_forward_wmma_fp16 multi_query_attention_forward_wmma_fp16.cpp)
add_example_executable(example_grouped_query_attention_forward_wmma_fp16 grouped_query_attention_forward_wmma_fp16.cpp)
endif()
add_custom_target(example_gemm_scale_softmax_gemm)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Grouped Query Attention,
Ainslie, Joshua, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. “GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints.”
arXiv, May 22, 2023. https://doi.org/10.48550/arXiv.2305.13245.
Example is GQA-4
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using Acc0DataType = F32;
using Acc1DataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
static constexpr ck::index_t QueryGroupNumber = 4;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
// #define CK_MHA_USE_WAVE_1
// #define CK_MHA_USE_WAVE_2
// #define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
using DeviceMHAFactory =
std::tuple<
#ifdef CK_MHA_USE_WAVE_1
// 1 wave, mrepeat = 1, nrepeat = 2, k/o repeat = 1~5
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
32,
// Gemm 0
16, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
32,
// Gemm 0
16, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<2, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 2, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 16, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_2
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
64,
// Gemm 0
32, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
64,
// Gemm 0
32, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 4, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 32, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_4
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
128,
// Gemm 0
64, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
128,
// Gemm 0
64, 64, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 4, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 64, 1, 2>, 8,
MaskingSpec>,
#endif
#ifdef CK_MHA_USE_WAVE_8
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>,
ck::tensor_operation::device::DeviceGroupedQueryAttentionForward_Wmma<
NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
GemmSpec, TensorSpecA, TensorSpecB0, TensorSpecB1, TensorSpecC, 1,
QueryGroupNumber,
256,
// Gemm 0
128, 128, 64, 8, 8,
// Gemm 1
64, 64, 8,
16, 16, 16,
// Per repeat = wave_m = wave_num, wave_n = 1
1, 8, 4,
// ABlockTransfer MK -> K0 M K1
S<2, 128, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B0BlockTransfer LK -> K0 L K1
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true,
// B1BlockTransfer NL -> L0 N L1
S<2, 16, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 1, false,
// CShuffleBlockTransfer MN
1, 1, S<1, 128, 1, 2>, 8,
MaskingSpec>
#endif
>;
// clang-format on
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance =
ck::tensor_operation::host::ReferenceBatchedGemm_GQA<ADataType,
B0DataType,
Acc0DataType,
Acc1DataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
QueryGroupNumber>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<Acc0DataType, ADataType, Acc0DataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance =
ck::tensor_operation::host::ReferenceBatchedGemm_GQA<ADataType,
B1DataType,
CDataType,
Acc1DataType,
AElementOp,
B1ElementOp,
CElementOp,
QueryGroupNumber>;
#include "run_grouped_query_attention_forward_wmma.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
......@@ -2,11 +2,10 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_n = Softmax(A_g_m_k * B0_g_k_l) * B1_g_l_n
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
Multi-Query Attention
Shazeer, Noam. “Fast Transformer Decoding: One Write-Head Is All You Need.” arXiv.org, November 6,
2019. https://arxiv.org/abs/1911.02150v1.
*/
#include <iostream>
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t K = 64;
ck::index_t O = 64;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 4;
ck::index_t G1 = 16;
ck::index_t KV_head = QueryGroupNumber;
float alpha = 1;
bool input_permute = false;
bool output_permute = true;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, KV_head, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * KV_head * K, K, KV_head * K, 1}
// B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{KV_head * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, KV_head, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * KV_head * O, O, 1, KV_head * O}
// B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{KV_head * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
case 4: // A, B0, B1 1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 5: // Rand: b1 b0; unit: a
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 6: // Rand: a b0 ; unit: B1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 7: // Rand: a b1 ; unit: b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 8: // Rand: a ; unit: b0 b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 9: // Rand: b0 ; unit: a b1
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 10: // Rand: b1 ; unit: a b0
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
float best_perf = .0;
float best_time = .0;
int not_pass = 0;
std::string best_kernel = "";
printf("Verification: %s\n", do_verification ? "ON" : "OFF");
// TODO ANT: replace array with vector?
ck::static_for<0, std::tuple_size_v<DeviceMHAFactory>, 1>{}([&](auto i) -> void {
const auto device_conv_mha_instance = std::get<i>(DeviceMHAFactory{});
using DeviceMHAInstance = ck::remove_cvref_t<decltype(device_conv_mha_instance)>;
auto gemm = DeviceMHAInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
G0,
G1,
alpha,
input_permute,
output_permute);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
// return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * G0 * G1;
std::size_t num_btype =
(sizeof(ADataType) * M * K + sizeof(CDataType) * M * O) * G0 * G1 +
(sizeof(B0DataType) * K * N + sizeof(B1DataType) * N * O) * G0 * QueryGroupNumber;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
if(tflops > best_perf)
{
best_perf = tflops;
best_time = ave_time * 1000;
best_kernel = gemm.GetTypeString();
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g0_g1_m_k({G0, G1, M, K});
Tensor<B0DataType> b0_g0_gq_k_n({G0, QueryGroupNumber, K, N});
Tensor<B1DataType> b1_g0_gq_n_o({G0, QueryGroupNumber, N, O});
Tensor<Acc0DataType> acc0_g0_g1_m_n({G0, G1, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g0_g1_m_n({G0, G1, M, N}); // scratch object after softmax
Tensor<CDataType> c_g0_g1_m_o_host_result({G0, G1, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g0_g1_m_k(idx[0], idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g0_gq_k_n(idx[0], idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g0_gq_n_o(idx[0], idx[1], idx[3], idx[2]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(a_g0_g1_m_k,
b0_g0_gq_k_n,
acc0_g0_g1_m_n,
a_element_op,
b0_element_op,
acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = typename DeviceMHAInstance::C0MatrixMask(N);
acc0_g0_g1_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[2], idx[3]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g0_g1_m_n, a1_g0_g1_m_n, 1, 0, {3});
ref_softmax_invoker.Run(ref_softmax_argument);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g0_g1_m_n,
b1_g0_gq_n_o,
c_g0_g1_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach(
[&](auto& self, auto idx) { self(idx) = c_g0_g1_m_o_host_result(idx); });
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
bool this_run_verification = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol);
printf("Verification: %s, Pass: %s\n",
do_verification ? "ON" : "OFF",
this_run_verification ? "YES" : "NO");
if(!this_run_verification)
{
not_pass = 1;
printf("%d th MQA instance verification Failed \n", i.value);
}
}
});
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Problem Size: BatchCount: " << G0 << ", HeadNum: " << G1 << ", M: " << M
<< ", N: " << N << ", K: " << K << ", O: " << O << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
std::cout << "Best kernel: " << best_kernel << " , " << best_perf << " TFlops , " << best_time
<< " us" << std::endl;
std::cout << "---------------------------------------------------------------------------------"
"-----------"
<< std::endl;
return not_pass;
}
......@@ -255,6 +255,130 @@ struct ReferenceBatchedGemm_MQA : public device::BaseOperator
}
};
template <typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
ck::index_t QueryGroupNumber>
struct ReferenceBatchedGemm_GQA : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<ADataType>& a_g0_g1_m_k,
const Tensor<BDataType>& b_g0_gq_k_n,
Tensor<CDataType>& c_g0_g1_m_n,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: a_g0_g1_m_k_{a_g0_g1_m_k},
b_g0_gq_k_n_{b_g0_gq_k_n},
c_g0_g1_m_n_{c_g0_g1_m_n},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
}
const Tensor<ADataType>& a_g0_g1_m_k_;
const Tensor<BDataType>& b_g0_gq_k_n_;
Tensor<CDataType>& c_g0_g1_m_n_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceBatchedGemm_GQA::Argument;
float Run(const Argument& arg)
{
auto f_g0g1mk_g0gqkn_g0g1mn = [&](auto g0, auto g1, auto m, auto n) {
const int G1 = arg.a_g0_g1_m_k_.mDesc.GetLengths()[1];
const int K = arg.a_g0_g1_m_k_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k = 0; k < K; ++k)
{
ADataType v_a;
BDataType v_b;
arg.a_element_op_(v_a, arg.a_g0_g1_m_k_(g0, g1, m, k));
arg.b_element_op_(v_b, arg.b_g0_gq_k_n_(g0, g1 * QueryGroupNumber / G1, k, n));
v_acc +=
ck::type_convert<AccDataType>(v_a) * ck::type_convert<AccDataType>(v_b);
}
AccDataType v_c;
arg.c_element_op_(v_c, v_acc);
arg.c_g0_g1_m_n_(g0, g1, m, n) = ck::type_convert<CDataType>(v_c);
};
make_ParallelTensorFunctor(f_g0g1mk_g0gqkn_g0g1mn,
arg.c_g0_g1_m_n_.mDesc.GetLengths()[0],
arg.c_g0_g1_m_n_.mDesc.GetLengths()[1],
arg.c_g0_g1_m_n_.mDesc.GetLengths()[2],
arg.c_g0_g1_m_n_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const Tensor<ADataType>& a_g0_g1_m_k,
const Tensor<BDataType>& b_g0_gq_k_n,
Tensor<CDataType>& c_g0_g1_m_n,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{
a_g0_g1_m_k, b_g0_gq_k_n, c_g0_g1_m_n, a_element_op, b_element_op, c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceBatchedGemm_GQA"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment