"benchmark/vscode:/vscode.git/clone" did not exist on "4474eaf5528aa073ce5ea6dc8c4136dc2b8f7449"
Commit b2290854 authored by rocking's avatar rocking
Browse files

Merge commit '3e6c2610' into gemm_norm

parents 253f7ef2 3e6c2610
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include "tensor_descriptor_helper.hpp" #include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdl_cshuffle_v1.hpp" #include "gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "tensor_operation/gpu/device/gemm_specialization.hpp" #include "tensor_operation/gpu/device/gemm_specialization.hpp"
#include "device_prop.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -558,6 +559,11 @@ struct DeviceGemm_Xdl_CShuffle ...@@ -558,6 +559,11 @@ struct DeviceGemm_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_, arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#include "tensor_descriptor_helper.hpp" #include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4.hpp" #include "gridwise_gemm_xdlops_v2r4.hpp"
#include "gemm_specialization.hpp" #include "gemm_specialization.hpp"
#include "device_prop.hpp"
#ifndef CK_RUN_KERNEL_AND_TIME #ifndef CK_RUN_KERNEL_AND_TIME
#define CK_RUN_KERNEL_AND_TIME 1 #define CK_RUN_KERNEL_AND_TIME 1
...@@ -528,6 +529,11 @@ struct DeviceGemmXdlSplitK ...@@ -528,6 +529,11 @@ struct DeviceGemmXdlSplitK
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_, return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_, arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_, arg.c_grid_desc_m_n_,
......
...@@ -346,7 +346,6 @@ struct DeviceGroupedGemmXdl ...@@ -346,7 +346,6 @@ struct DeviceGroupedGemmXdl
return block_2_ctile_map_.CheckValidity(c_grid_desc_m_n); return block_2_ctile_map_.CheckValidity(c_grid_desc_m_n);
} }
private:
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_; typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
ck::index_t BlockStart_; ck::index_t BlockStart_;
}; };
...@@ -418,9 +417,8 @@ struct DeviceGroupedGemmXdl ...@@ -418,9 +417,8 @@ struct DeviceGroupedGemmXdl
DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC); DeviceGroupedGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);
const index_t grid_size_grp = const index_t grid_size_grp =
typename GroupedGemmBlock2CTileMap::UnderlyingBlock2CTileMap( GroupedGemmBlock2CTileMap(c_grid_desc_m_n_, M01, N01, 0)
c_grid_desc_m_n_, M01, N01) .block_2_ctile_map_.CalculateGridSize(c_grid_desc_m_n_);
.CalculateGridSize(c_grid_desc_m_n_);
const index_t BlockStart = grid_size_; const index_t BlockStart = grid_size_;
const index_t BlockEnd = grid_size_ + grid_size_grp; const index_t BlockEnd = grid_size_ + grid_size_grp;
......
...@@ -17,7 +17,7 @@ template <typename InDataType, ...@@ -17,7 +17,7 @@ template <typename InDataType,
typename OutDataType, typename OutDataType,
typename AccDataType, typename AccDataType,
ck::ReduceTensorOp ReduceOpId, ck::ReduceTensorOp ReduceOpId,
bool NeedIndices, bool OuputIndex,
ck::index_t BlockSize, ck::index_t BlockSize,
ck::index_t ReduceMThreadClusterSize, ck::index_t ReduceMThreadClusterSize,
ck::index_t ReduceKThreadClusterSize, ck::index_t ReduceKThreadClusterSize,
...@@ -44,8 +44,6 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd ...@@ -44,8 +44,6 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>:: typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
AccElementwiseOperation; AccElementwiseOperation;
static constexpr bool BetaIsZero = true;
static constexpr index_t InSrcOutDstVectorDim = static constexpr index_t InSrcOutDstVectorDim =
0; // for NHWC, the dim C is the vector Dim for both input and output in memory, which is 0; // for NHWC, the dim C is the vector Dim for both input and output in memory, which is
// not reduced. // not reduced.
...@@ -206,7 +204,8 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd ...@@ -206,7 +204,8 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
{ {
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
using gridwise_reduce = GridwiseReduction_mk_to_m_threadwise<InDataType, using gridwise_reduce =
GridwiseReduction_mk_to_m_threadwise<InDataType,
OutDataType, OutDataType,
AccDataType, AccDataType,
IndexDataType, IndexDataType,
...@@ -215,11 +214,9 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd ...@@ -215,11 +214,9 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
ReduceOperation, ReduceOperation,
InElementwiseOperation, InElementwiseOperation,
AccElementwiseOperation, AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
false, // propagate_nan false, // propagate_nan
BetaIsZero,
BlockSize, BlockSize,
ReduceMThreadClusterSize,
ReduceKThreadClusterSize,
ReduceMThreadSliceSize, ReduceMThreadSliceSize,
ReduceKThreadSliceSize, ReduceKThreadSliceSize,
InSrcOutDstVectorDim, InSrcOutDstVectorDim,
...@@ -227,7 +224,8 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd ...@@ -227,7 +224,8 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
InSrcOutDstVectorSize>; InSrcOutDstVectorSize>;
const auto kernel = kernel_reduce_threadwise<gridwise_reduce, const auto kernel = kernel_reduce_threadwise<gridwise_reduce,
NeedIndices, OuputIndex,
false, // don't have index input
InDataType, InDataType,
OutDataType, OutDataType,
AccDataType, AccDataType,
...@@ -252,6 +250,7 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd ...@@ -252,6 +250,7 @@ struct DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C : public DevicePool2dFwd
arg.acc_element_op_, arg.acc_element_op_,
float(1), float(1),
arg.p_in_dev_, arg.p_in_dev_,
nullptr,
float(0), float(0),
arg.p_out_dev_, arg.p_out_dev_,
arg.p_out_indices_dev_); arg.p_out_indices_dev_);
......
...@@ -16,35 +16,18 @@ namespace device { ...@@ -16,35 +16,18 @@ namespace device {
template <typename InElementwiseOperation, typename AccElementwiseOperation> template <typename InElementwiseOperation, typename AccElementwiseOperation>
struct DeviceReduce : public BaseOperator struct DeviceReduce : public BaseOperator
{ {
virtual long_index_t GetWorkspaceSizeInBytes(const std::vector<int> inLengths,
const std::vector<int> reduceDims)
{
(void)inLengths;
(void)reduceDims;
return (0);
};
virtual bool HasFurtherCall() { return (false); };
virtual std::vector<int> GetWorkspace2dLengths(const BaseArgument* argPtr)
{
(void)argPtr;
return (std::vector<int>{0, 0});
};
virtual std::unique_ptr<BaseArgument> virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int> inLengths, MakeArgumentPointer(const std::vector<index_t> inLengths,
const std::vector<int> inStrides, const std::vector<index_t> inStrides,
const std::vector<int> outLengths, const std::vector<index_t> outLengths,
const std::vector<int> outStrides, const std::vector<index_t> outStrides,
const std::vector<int> reduceDims, const std::vector<int> reduceDims,
float alpha, float alpha,
float beta, float beta,
const void* in_dev, const void* in_dev,
const void* in_index_dev,
void* out_dev, void* out_dev,
void* out_indices_dev, void* out_index_dev,
void* workspace_dev,
const InElementwiseOperation in_elementwise_op, const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) = 0; const AccElementwiseOperation acc_elementwise_op) = 0;
......
#ifndef DEVICE_REDUCE_BLOCKWISE_HPP
#define DEVICE_REDUCE_BLOCKWISE_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_blockwise.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperation,
typename AccElementwiseOperation,
bool PropagateNan,
bool NeedIndices,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
struct DeviceReduceBlockWise : public DeviceReduce<InElementwiseOperation, AccElementwiseOperation>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert(((InSrcVectorDim == 0 && MThreadSliceSize % InSrcVectorSize == 0) ||
(InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0)) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices;
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t numSrcDim = Rank;
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr bool reduceAllDim = (NumInvariantDim == 0);
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeSrc2dDescriptor(const std::vector<int>& inLengths,
const std::vector<int>& inStrides)
{
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<numSrcDim>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<numSrcDim>{});
const auto inDesc = make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto in_grid_desc_m_k = [&]() {
if constexpr(reduceAllDim)
{
const auto one_dim_inDesc = transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(tupleSrcLengths)),
make_tuple(typename arithmetic_sequence_gen<0, numSrcDim, 1>::type{}),
make_tuple(Sequence<0>{}));
return transform_tensor_descriptor(one_dim_inDesc,
make_tuple(make_unmerge_transform(make_tuple(
1, one_dim_inDesc.GetLength(Number<0>{})))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1>{}));
}
else
{
using InvariantDims = typename arithmetic_sequence_gen<0, NumInvariantDim, 1>::type;
using ReduceDims = typename arithmetic_sequence_gen<NumInvariantDim, Rank, 1>::type;
const auto reduceDimLengths =
make_tuple_from_array_and_index_seq(inLengths, ReduceDims{});
const auto invariantDimLengths =
make_tuple_from_array_and_index_seq(inLengths, InvariantDims{});
return transform_tensor_descriptor(
inDesc,
make_tuple(make_merge_transform(invariantDimLengths),
make_merge_transform(reduceDimLengths)),
make_tuple(InvariantDims{}, ReduceDims{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}();
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded);
};
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides)
{
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto inPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, inPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
};
struct Argument : public BaseArgument
{
Argument(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_indices_dev,
AccDataType* workspace_dev,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op)
: outLengths_{outLengths},
outStrides_{outStrides},
in_dev_{in_dev},
out_dev_{out_dev},
out_indices_dev_{out_indices_dev},
in_elementwise_op_{in_elementwise_op},
acc_elementwise_op_{acc_elementwise_op}
{
(void)workspace_dev;
inLengths_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inLengths, reduceDims);
inStrides_ = shuffle_tensor_dimensions<Rank, NumReduceDim>(inStrides, reduceDims);
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
std::tie(invariant_total_length, reduce_total_length) =
get_2d_lengths<Rank, NumReduceDim>(inLengths_);
if constexpr(NumInvariantDim == 0)
invariant_lowest_length = 1;
else
invariant_lowest_length = inLengths_[NumInvariantDim - 1];
reduce_lowest_length = inLengths_[Rank - 1];
gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize;
}
std::vector<int> inLengths_;
std::vector<int> inStrides_;
std::vector<int> outLengths_;
std::vector<int> outStrides_;
AccDataType alpha_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
IndexDataType* out_indices_dev_;
InElementwiseOperation in_elementwise_op_;
AccElementwiseOperation acc_elementwise_op_;
int invariant_lowest_length;
int reduce_lowest_length;
size_t invariant_total_length;
size_t reduce_total_length;
size_t gridSize;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto in_grid_desc_m_k =
DeviceReduceBlockWise::MakeSrc2dDescriptor(arg.inLengths_, arg.inStrides_);
const auto out_grid_desc_m =
DeviceReduceBlockWise::MakeDst1dDescriptor(arg.outLengths_, arg.outStrides_);
using InGridDesc_M_K = decltype(in_grid_desc_m_k);
using OutGridDesc_M = decltype(out_grid_desc_m);
using GridwiseReduce = GridwiseReduction_mk_to_m_blockwise<InDataType,
OutDataType,
AccDataType,
IndexDataType,
InGridDesc_M_K,
OutGridDesc_M,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
BetaIsZero,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSize>;
float avg_time = 0;
const auto kernel = kernel_reduce_blockwise<GridwiseReduce,
NeedIndices,
InDataType,
OutDataType,
AccDataType,
IndexDataType,
InGridDesc_M_K,
OutGridDesc_M,
InElementwiseOperation,
AccElementwiseOperation>;
avg_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize),
dim3(BlockSize),
0,
in_grid_desc_m_k,
out_grid_desc_m,
arg.in_elementwise_op_,
arg.acc_elementwise_op_,
arg.alpha_,
arg.in_dev_,
arg.beta_,
arg.out_dev_,
nullptr,
arg.out_indices_dev_);
return (avg_time);
};
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
};
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if constexpr(InSrcVectorDim == 0)
{
if constexpr(NumInvariantDim == 0)
{
return (false);
}
else
{
if(pArg->inStrides_[NumInvariantDim - 1] != 1)
return (false);
if(pArg->invariant_lowest_length % InSrcVectorSize != 0)
return (false);
};
}
else
{
if(pArg->inStrides_[Rank - 1] != 1)
return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
return (false);
};
// To improve
if(pArg->invariant_lowest_length % OutDstVectorSize != 0)
return (false);
// cases with very small reduce_total_length should be handled by the ThreadWise method
if(pArg->reduce_total_length / KThreadSliceSize < 2)
return (false);
return (true);
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
return std::make_unique<Argument>(inLengths,
inStrides,
outLengths,
outStrides,
reduceDims,
alpha,
beta,
static_cast<const InDataType*>(in_dev),
static_cast<OutDataType*>(out_dev),
static_cast<IndexDataType*>(out_indices_dev),
static_cast<AccDataType*>(workspace_dev),
in_elementwise_op,
acc_elementwise_op);
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceReduceBlockWise<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "InSrcVectorDim_" << InSrcVectorDim << "_InSrcVectorSize_" << InSrcVectorSize << "_OutDstVectorSize_" << OutDstVectorSize << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_REDUCE_BLOCKWISE_SECOND_CALL_HPP
#define DEVICE_REDUCE_BLOCKWISE_SECOND_CALL_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_reduce.hpp"
#include "device_reduce_common.hpp"
#include "gridwise_2d_reduction_blockwise.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InDataType,
typename AccDataType,
typename OutDataType,
index_t Rank,
index_t NumReduceDim,
typename ReduceOperation,
typename InElementwiseOperation,
typename AccElementwiseOperation,
bool PropagateNan,
bool NeedIndices,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t InSrcVectorDim,
index_t InSrcVectorSize,
index_t OutDstVectorSize>
struct DeviceReduceBlockWiseSecondCall
: public DeviceReduce<InElementwiseOperation, AccElementwiseOperation>
{
static_assert(Rank <= 6, "Bigger Rank size is not supported!");
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"Invalid thread cluster size assignments!");
static_assert((InSrcVectorDim == 1 && KThreadSliceSize % InSrcVectorSize == 0) &&
(MThreadSliceSize % OutDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
using IndexDataType = int32_t;
static constexpr bool BetaIsZero = NeedIndices;
static_assert(
std::is_same<InDataType, AccDataType>::value,
"InDataType and AccDataType should be the same to use DEviceReduceBlockWiseSecondCall!");
static constexpr index_t NumInvariantDim = Rank - NumReduceDim;
static constexpr index_t numDstDim = (NumInvariantDim == 0) ? 1 : NumInvariantDim;
static constexpr int M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr int K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
static auto MakeSrc2dDescriptor(const std::vector<int>& inLengths,
const std::vector<int>& inStrides)
{
const auto tupleSrcLengths = make_tuple_from_array(inLengths, Number<2>{});
const auto tupleSrcStrides = make_tuple_from_array(inStrides, Number<2>{});
const auto in_grid_desc_m_k =
make_naive_tensor_descriptor(tupleSrcLengths, tupleSrcStrides);
const auto invariantLength = in_grid_desc_m_k.GetLength(Number<0>{});
const auto reduceLength = in_grid_desc_m_k.GetLength(Number<1>{});
const auto inPad_M =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
const auto inPad_K =
math::integer_least_multiple(reduceLength, K_BlockTileSize) - reduceLength;
auto in_grid_desc_m_k_padded = transform_tensor_descriptor(
in_grid_desc_m_k,
make_tuple(make_right_pad_transform(invariantLength, inPad_M),
make_right_pad_transform(reduceLength, inPad_K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return (in_grid_desc_m_k_padded);
};
static auto MakeDst1dDescriptor(const std::vector<int>& outLengths,
const std::vector<int>& outStrides)
{
const auto tupleDstLengths = make_tuple_from_array(outLengths, Number<numDstDim>{});
const auto tupleDstStrides = make_tuple_from_array(outStrides, Number<numDstDim>{});
auto outDesc = make_naive_tensor_descriptor(tupleDstLengths, tupleDstStrides);
auto out_grid_desc_m = transform_tensor_descriptor(
outDesc,
make_tuple(make_merge_transform(tupleDstLengths)),
make_tuple(typename arithmetic_sequence_gen<0, numDstDim, 1>::type{}),
make_tuple(Sequence<0>{}));
const auto invariantLength = out_grid_desc_m.GetLength(Number<0>{});
const auto outPad =
math::integer_least_multiple(invariantLength, M_BlockTileSize) - invariantLength;
auto out_grid_desc_m_padded = transform_tensor_descriptor(
out_grid_desc_m,
make_tuple(make_right_pad_transform(invariantLength, outPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return (out_grid_desc_m_padded);
};
struct Argument : public BaseArgument
{
Argument(const std::vector<int>& inLengths,
const std::vector<int>& inStrides,
const std::vector<int>& outLengths,
const std::vector<int>& outStrides,
float alpha,
float beta,
const InDataType* in_dev,
OutDataType* out_dev,
IndexDataType* out_indices_dev,
AccDataType* workspace_dev,
const InElementwiseOperation& in_elementwise_op,
const AccElementwiseOperation& acc_elementwise_op)
: inLengths_(inLengths),
inStrides_(inStrides),
outLengths_(outLengths),
outStrides_(outStrides),
in_dev_{in_dev},
out_dev_{out_dev},
out_indices_dev_{out_indices_dev},
in_elementwise_op_(in_elementwise_op),
acc_elementwise_op_(acc_elementwise_op)
{
alpha_ = type_convert<AccDataType>(alpha);
beta_ = type_convert<AccDataType>(beta);
invariant_total_length = inLengths[0];
reduce_total_length = inLengths[1];
invariant_lowest_length = inLengths[0];
reduce_lowest_length = inLengths[1];
gridSize = math::integer_least_multiple(invariant_total_length, M_BlockTileSize) /
M_BlockTileSize;
size_t ws_buf2_bytes_offset = math::integer_least_multiple(
invariant_total_length * reduce_total_length * sizeof(AccDataType), 64);
if constexpr(NeedIndices)
workspace_indices_dev_ = reinterpret_cast<index_t*>(
reinterpret_cast<char*>(workspace_dev) + ws_buf2_bytes_offset);
else
workspace_indices_dev_ = nullptr;
}
std::vector<int> inLengths_;
std::vector<int> inStrides_;
std::vector<int> outLengths_;
std::vector<int> outStrides_;
AccDataType alpha_;
AccDataType beta_;
const InDataType* in_dev_;
OutDataType* out_dev_;
IndexDataType* out_indices_dev_;
IndexDataType* workspace_indices_dev_;
InElementwiseOperation in_elementwise_op_;
AccElementwiseOperation acc_elementwise_op_;
int invariant_lowest_length;
int reduce_lowest_length;
size_t invariant_total_length;
size_t reduce_total_length;
size_t gridSize;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto in_grid_desc_m_k = DeviceReduceBlockWiseSecondCall::MakeSrc2dDescriptor(
arg.inLengths_, arg.inStrides_);
const auto out_grid_desc_m = DeviceReduceBlockWiseSecondCall::MakeDst1dDescriptor(
arg.outLengths_, arg.outStrides_);
using InGridDesc_M_K = decltype(in_grid_desc_m_k);
using OutGridDesc_M = decltype(out_grid_desc_m);
using GridwiseReduce = GridwiseReduction_mk_to_m_blockwise<InDataType,
OutDataType,
AccDataType,
IndexDataType,
InGridDesc_M_K,
OutGridDesc_M,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
BetaIsZero,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
InSrcVectorDim,
InSrcVectorSize,
OutDstVectorSize>;
float avg_time = 0;
const auto kernel = kernel_reduce_blockwise_second_call<GridwiseReduce,
NeedIndices,
InDataType,
OutDataType,
AccDataType,
IndexDataType,
InGridDesc_M_K,
OutGridDesc_M,
InElementwiseOperation,
AccElementwiseOperation>;
avg_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize),
dim3(BlockSize),
0,
in_grid_desc_m_k,
out_grid_desc_m,
arg.in_elementwise_op_,
arg.acc_elementwise_op_,
arg.alpha_,
arg.in_dev_,
arg.beta_,
arg.out_dev_,
arg.workspace_indices_dev_,
arg.out_indices_dev_);
return (avg_time);
};
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if constexpr(InSrcVectorDim == 0)
return (false);
if(pArg->reduce_lowest_length % InSrcVectorSize != 0)
return (false);
// To improve
if(pArg->invariant_lowest_length % OutDstVectorSize != 0)
return (false);
// cases with very small reduce_total_length should be handled by the ThreadWise method
if(pArg->reduce_total_length / KThreadSliceSize < 2)
return (false);
return (true);
};
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<int> inLengths,
const std::vector<int> inStrides,
const std::vector<int> outLengths,
const std::vector<int> outStrides,
const std::vector<int> reduceDims,
float alpha,
float beta,
const void* in_dev,
void* out_dev,
void* out_indices_dev,
void* workspace_dev,
const InElementwiseOperation in_elementwise_op,
const AccElementwiseOperation acc_elementwise_op) override
{
(void)reduceDims;
return std::make_unique<Argument>(inLengths,
inStrides,
outLengths,
outStrides,
alpha,
beta,
static_cast<const InDataType*>(in_dev),
static_cast<OutDataType*>(out_dev),
static_cast<IndexDataType*>(out_indices_dev),
static_cast<AccDataType*>(workspace_dev),
in_elementwise_op,
acc_elementwise_op);
};
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
};
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceReduceBlockWiseSecondCall<" << BlockSize << ",";
str << "M_C" << MThreadClusterSize << "_S" << MThreadSliceSize << ",";
str << "K_C" << KThreadClusterSize << "_S" << KThreadSliceSize << ",";
str << "InSrcVectorDim_" << InSrcVectorDim << "_InSrcVectorSize_" << InSrcVectorSize << "_OutDstVectorSize_" << OutDstVectorSize << ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -14,13 +14,13 @@ namespace device { ...@@ -14,13 +14,13 @@ namespace device {
// here, inLengths[] is already shuffled so that lengths of invariant dims are included before those // here, inLengths[] is already shuffled so that lengths of invariant dims are included before those
// of reduce dims // of reduce dims
template <int Rank, int NumReduceDim> template <index_t Rank, int NumReduceDim>
std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths) std::pair<long_index_t, long_index_t> get_2d_lengths(const std::vector<index_t>& inLengths)
{ {
static_assert(Rank <= 6, "bigger Rank size not supported!"); static_assert(Rank <= 6, "bigger Rank size not supported!");
size_t invariant_total_length = 1; long_index_t invariant_total_length = 1;
size_t reduce_total_length = 1; long_index_t reduce_total_length = 1;
constexpr int NumInvariantDim = Rank - NumReduceDim; constexpr int NumInvariantDim = Rank - NumReduceDim;
...@@ -35,13 +35,13 @@ std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths) ...@@ -35,13 +35,13 @@ std::pair<size_t, size_t> get_2d_lengths(const std::vector<int>& inLengths)
// helper functions using variadic template arguments // helper functions using variadic template arguments
template <index_t... Ns> template <index_t... Ns>
auto make_tuple_from_array_and_index_seq(const std::vector<int>& lengths, Sequence<Ns...>) auto make_tuple_from_array_and_index_seq(const std::vector<index_t>& lengths, Sequence<Ns...>)
{ {
return make_tuple(static_cast<index_t>(lengths[Ns])...); return make_tuple(static_cast<index_t>(lengths[Ns])...);
}; };
template <index_t arraySize> template <index_t arraySize>
static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arraySize>) auto make_tuple_from_array(const std::vector<index_t>& lengths, Number<arraySize>)
{ {
static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions"); static_assert(arraySize >= 1 && arraySize <= 6, "The tensor should have 1 to 6 dimensions");
...@@ -51,10 +51,10 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS ...@@ -51,10 +51,10 @@ static auto make_tuple_from_array(const std::vector<int>& lengths, Number<arrayS
}; };
template <index_t Rank, index_t NumReduceDim> template <index_t Rank, index_t NumReduceDim>
std::vector<int> shuffle_tensor_dimensions(const std::vector<int>& origLengthsStrides, std::vector<index_t> shuffle_tensor_dimensions(const std::vector<index_t>& origLengthsStrides,
const std::vector<int>& reduceDims) const std::vector<int>& reduceDims)
{ {
std::vector<int> newLengthsStrides; std::vector<index_t> newLengthsStrides;
assert(Rank == origLengthsStrides.size() && NumReduceDim == reduceDims.size()); assert(Rank == origLengthsStrides.size() && NumReduceDim == reduceDims.size());
......
...@@ -306,7 +306,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -306,7 +306,7 @@ struct GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__ __device__ static constexpr auto __host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n) MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{ {
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>( return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n); c_grid_desc_m_n);
} }
......
...@@ -259,7 +259,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1 ...@@ -259,7 +259,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
__host__ __device__ static constexpr auto __host__ __device__ static constexpr auto
MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n) MakeDefaultBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n)
{ {
return BlockToCTileMap_M00_N00_M01_N01<MPerBlock, NPerBlock, CGridDesc_M_N>( return BlockToCTileMap_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>(
c_grid_desc_m_n); c_grid_desc_m_n);
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment