Commit b2290854 authored by rocking's avatar rocking
Browse files

Merge commit '3e6c2610' into gemm_norm

parents 253f7ef2 3e6c2610
......@@ -35,7 +35,7 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-
llvm-amdgpu \
pkg-config \
python \
python3 \
python3.8 \
python-dev \
python3-dev \
python-pip \
......@@ -72,6 +72,13 @@ ARG PREFIX=/opt/rocm
RUN cget install pfultz2/rocm-recipes
# Install rbuild
RUN pip3 install https://github.com/RadeonOpenCompute/rbuild/archive/6d78a0553babdaea8d2da5de15cbda7e869594b8.tar.gz
# Install packages for processing the performance results
RUN pip3 install --upgrade pip
RUN pip3 install sqlalchemy
RUN pip3 install pymysql
RUN pip3 install pandas
RUN pip3 install setuptools-rust
RUN pip3 install sshtunnel
# Setup ubsan environment to printstacktrace
ENV UBSAN_OPTIONS=print_stacktrace=1
......
......@@ -213,15 +213,29 @@ def runCKProfiler(Map conf=[:]){
cmake_build(conf)
dir("script"){
def perf_log = "perf_gemm_${gpu_arch}.log"
def artifact = "profile_gemm_${gpu_arch}.txt"
sh "./profile_gemm.sh gemm 0 0 0 1 0 5 | tee ${perf_log} ||true"
sh "./profile_gemm.sh gemm 0 1 0 1 0 5 | tee -a ${perf_log} ||true"
sh "./profile_gemm.sh gemm 0 2 0 1 0 5 | tee -a ${perf_log} ||true"
sh "./profile_gemm.sh gemm 0 3 0 1 0 5 | tee -a ${perf_log} || true"
sh "rm -f ${perf_log}"
sh "echo Branch name: ${env.BRANCH_NAME} > ${perf_log}"
sh "./profile_gemm.sh gemm 0 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 0 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 0 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 0 3 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 3 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 3 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 3 0 1 0 5 | tee -a ${perf_log}"
//results will be parsed, stored, and analyzed within the python script
//the script will return 0 if the performance criteria are met
//or return 1 if the criteria are not met
sh "python3 parse_perf_data.py ${perf_log} | tee ${artifact}"
archiveArtifacts "${perf_log}"
sh "python3 parse_perf_data.py ${perf_log} "
}
}
}
......@@ -246,7 +260,6 @@ def runPerfTest(Map conf=[:]){
}
}
pipeline {
agent none
options {
......@@ -280,19 +293,19 @@ pipeline {
// buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
// }
//}
stage('Build Profiler: Debug, gfx908')
{
agent { label rocmnode("nogpu")}
environment{
setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
}
steps{
// until we stabilize debug build due to compiler crashes
catchError(buildResult: 'SUCCESS', stageResult: 'FAILURE') {
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Debug')
}
}
}
//stage('Build Profiler: Debug, gfx908')
//{
// agent { label rocmnode("nogpu")}
// environment{
// setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
// }
// steps{
// // until we stabilize debug build due to compiler crashes
// catchError(buildResult: 'SUCCESS', stageResult: 'FAILURE') {
// buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Debug')
// }
// }
//}
stage('Clang Format') {
agent{ label rocmnode("nogpu") }
environment{
......@@ -312,7 +325,7 @@ pipeline {
}
}
}
stage("Tests")
stage("Tests")
{
parallel
{
......@@ -367,15 +380,20 @@ pipeline {
agent{ label rocmnode("gfx908")}
environment{
setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
}
dbuser = "${dbuser}"
dbpassword = "${dbpassword}"
dbsship = "${dbsship}"
dbsshport = "${dbsshport}"
dbsshuser = "${dbsshuser}"
dbsshpassword = "${dbsshpassword}"
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
}
}
}
}
// enable after the cmake file supports packaging
// stage("Packages") {
// when {
......
add_example_executable(example_gemm_dl_fp32 gemm_dl_fp32.cpp)
add_example_executable(example_gemm_dl_fp16 gemm_dl_fp16.cpp)
add_example_executable(example_gemm_dl_int8 gemm_dl_int8.cpp)
add_example_executable(example_gemm_xdl_fp16 gemm_xdl_fp16.cpp)
add_example_executable(example_gemm_xdl_bf16 gemm_xdl_bf16.cpp)
add_example_executable(example_gemm_xdl_int8 gemm_xdl_int8.cpp)
add_example_executable(example_gemm_xdl_fp64 gemm_xdl_fp64.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ALayout = Col;
using BLayout = Row;
using CLayout = Row;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 16, 2, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<2, 1, 4, 2>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 2>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(1);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << "wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
<< std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
bool pass = true;
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
pass = ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
}
return pass ? 0 : 1;
}
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = float;
using BDataType = float;
using CDataType = float;
using AccDataType = float;
using ALayout = Col;
using BLayout = Row;
using CLayout = Row;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::
// ########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 16, 1, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 1>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<2, 1, 4, 1>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(1);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << "wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
<< std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
bool pass = true;
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
pass = ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
}
return pass ? 0 : 1;
}
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using AccDataType = int32_t;
using ALayout = Col;
using BLayout = Row;
using CLayout = Row;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::
// #########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// #########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// #########| | | | | | | | Operation| Operation| Operation| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// #########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmDl< int8_t, int8_t, int8_t, int32_t, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 16, 4, 4, 4, 1, S<8, 2>, S<8, 2>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<2, 1, 4, 4>, S<8, 1, 32, 1>, S<0, 3, 1, 2>, S<0, 3, 1, 2>, S<1, 1, 4, 1>, S<0, 3, 1, 2>, S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>, 5, 4>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 1)
{
// do nothing
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(1);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << "wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
<< std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
bool pass = true;
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
pass = ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
}
return pass ? 0 : 1;
}
......@@ -84,7 +84,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<float, float, float, PassThrough, PassThrough, PassThrough>;
ReferenceGemm<float, float, float, float, PassThrough, PassThrough, PassThrough>;
int main(int argc, char* argv[])
{
......
......@@ -52,7 +52,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
int main(int argc, char* argv[])
{
......
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F64 = double;
using F32 = float;
using F16 = ck::half_t;
using ADataType = double;
using BDataType = double;
using CDataType = double;
using AccDataType = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if 0
< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 32, 32, 4, 1, 16, 16, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, true, 7, 1>;
#else
< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>;
#endif
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
template <typename DataType>
std::ostream& show_2d_matrix(std::ostream& os, Tensor<DataType>& matrix)
{
os << "[" << std::endl;
for(int x = 0; x < matrix.mDesc.GetLengths()[0]; x++)
{
os << "[";
for(int y = 0; y < matrix.mDesc.GetLengths()[1]; y++)
{
os << std::setw(4) << static_cast<float>(matrix(x, y));
}
os << "]" << std::endl;
}
os << "]";
return os;
}
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "data type: " << typeid(ADataType{}).name() << std::endl;
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
#if 0
{
show_2d_matrix(std::cout << "a : ", a_m_k) << std::endl;
show_2d_matrix(std::cout << "b: ", b_k_n) << std::endl;
show_2d_matrix(std::cout << "c_device: ", c_m_n_device_result) << std::endl;
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
}
#endif
ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
}
return 0;
}
......@@ -78,8 +78,13 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
int main(int argc, char* argv[])
{
......
add_example_executable(example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp)
add_example_executable(example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp)
add_example_executable(example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp)
add_example_executable(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp)
target_link_libraries(example_convnd_fwd_xdl_fp64 PRIVATE conv_util)
target_link_libraries(example_convnd_fwd_xdl_fp32 PRIVATE conv_util)
target_link_libraries(example_convnd_fwd_xdl_int8 PRIVATE conv_util)
target_link_libraries(example_convnd_fwd_xdl_fp16 PRIVATE conv_util)
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "check_err.hpp"
#include "config.hpp"
#include "conv_util.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"
namespace {
using InDataType = double;
using WeiDataType = double;
using OutDataType = double;
using AccDataType = double;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
using DeviceConvFwdBasePtr =
ck::tensor_operation::device::DeviceConvFwdPtr<InElementOp, WeiElementOp, OutElementOp>;
template <ck::index_t NumDimSpatial>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
// clang-format off
InDataType, //
WeiDataType, //
OutDataType, //
AccDataType, //
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
NumDimSpatial, // NumDimSpatial
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
2, // K1
16, // MPerXDL
16, // NPerXDL
4, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
2, // ABlockTransferSrcScalarPerVector
2, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
2, // BBlockTransferSrcScalarPerVector
2, // BBlockTransferDstScalarPerVector_K1
true, // BBlockTransferAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
// clang-format on
template <ck::index_t NumDimSpatial>
using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
NumDimSpatial>;
DeviceConvFwdBasePtr get_conv_instance(int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 3: {
return std::make_unique<DeviceConvNDFwdInstance<3>>();
}
case 2: {
return std::make_unique<DeviceConvNDFwdInstance<2>>();
}
case 1: {
return std::make_unique<DeviceConvNDFwdInstance<1>>();
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
void print_use_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, int argc, char* argv[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int conv_args = 3 + num_dim_spatial * 6;
int cmdline_nargs = conv_args + 5;
if(cmdline_nargs != argc)
{
print_use_msg();
exit(0);
}
ck::utils::conv::ConvParams params;
int arg_idx = 5;
params.num_dim_spatial_ = num_dim_spatial;
params.N_ = std::stoi(argv[arg_idx++]);
params.K_ = std::stoi(argv[arg_idx++]);
params.C_ = std::stoi(argv[arg_idx++]);
params.filter_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.input_spatial_lengths_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_strides_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
}
params.conv_filter_dilations_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
}
params.input_left_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
}
params.input_right_pads_.resize(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
}
return params;
}
} // anonymous namespace
int main(int argc, char* argv[])
{
using namespace ck::utils::conv;
bool do_verification = 0;
int init_method = 0;
bool time_kernel = false;
int num_dim_spatial = 2;
ck::utils::conv::ConvParams params;
if(argc >= 5)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
num_dim_spatial = std::stoi(argv[4]);
}
if(argc >= 6)
{
params = parse_conv_params(num_dim_spatial, argc, argv);
}
std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.C_)};
input_dims.insert(std::end(input_dims),
std::begin(params.input_spatial_lengths_),
std::end(params.input_spatial_lengths_));
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K_),
static_cast<std::size_t>(params.C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(params.filter_spatial_lengths_),
std::end(params.filter_spatial_lengths_));
const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N_),
static_cast<std::size_t>(params.K_)};
output_dims.insert(std::end(output_dims),
std::begin(output_spatial_lengths),
std::end(output_spatial_lengths));
Tensor<InDataType> input(get_input_host_tensor_descriptor(input_dims, num_dim_spatial));
Tensor<WeiDataType> weights(get_filters_host_tensor_descriptor(filter_dims, num_dim_spatial));
Tensor<OutDataType> host_output(
get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
Tensor<OutDataType> device_output(
get_output_host_tensor_descriptor(output_dims, num_dim_spatial));
std::cout << "input: " << input.mDesc << std::endl;
std::cout << "weights: " << weights.mDesc << std::endl;
std::cout << "output: " << host_output.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
case 2:
input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
break;
default:
input.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
weights.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
}
DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());
in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(weights.mData.data());
// do GEMM
auto conv = get_conv_instance(num_dim_spatial);
auto invoker = conv->MakeInvokerPointer();
auto argument =
conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
params.N_,
params.K_,
params.C_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv->IsSupportedArgument(argument.get()))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker->Run(argument.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = get_flops(
params.N_, params.C_, params.K_, params.filter_spatial_lengths_, output_spatial_lengths);
std::size_t num_btype =
get_btype<InDataType, WeiDataType, OutDataType>(params.N_,
params.C_,
params.K_,
params.input_spatial_lengths_,
params.filter_spatial_lengths_,
output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
auto verify_f = [&input, &weights, &host_output, &params, &out_device_buf, &device_output](
const auto& ref_conv) {
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(input,
weights,
host_output,
params.conv_filter_strides_,
params.conv_filter_dilations_,
params.input_left_pads_,
params.input_right_pads_,
InElementOp{},
WeiElementOp{},
OutElementOp{});
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(device_output.mData.data());
ck::utils::check_err(
host_output.mData, device_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);
};
switch(num_dim_spatial)
{
case 3: {
auto ref_conv = ReferenceConvNDFwdInstance<3>();
verify_f(ref_conv);
break;
}
case 2: {
auto ref_conv = ReferenceConvNDFwdInstance<2>();
verify_f(ref_conv);
break;
}
case 1: {
auto ref_conv = ReferenceConvNDFwdInstance<1>();
verify_f(ref_conv);
break;
}
default: {
throw std::runtime_error("Unsupported number of spatial dimensions provided!");
}
}
}
}
add_example_executable(example_reduce_blockwise reduce_blockwise.cpp -D 16,64,32,960 -v 1 1 10)
add_example_executable(example_reduce_blockwise reduce_blockwise.cpp)
add_example_executable(example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp)
......@@ -5,23 +5,38 @@
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg2: run kernel # of times (>1)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 10
#arg2: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 1
```
Result
```
./bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 1
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 3 times...
Perf: 0.23536 ms, 267.32 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
error: 0
max_diff: 0, 529, 529
root@dc-smc-18:/data/composable_kernel/Build3# bin/example_reduce_blockwise -D 16,64,32,960 -v 1 1 10
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up
Warm up 1 time
Start running 10 times...
Perf: 0.282592 ms, 222.641 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
```
# Instructions for ```example_reduce_blockwise_two_call```
## Run ```example_reduce_blockwise_two_call```
```bash
#arg1: verification (0=no, 1=yes(
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_reduce_blockwise_two_call 1 2 1
Result
```
./bin/example_reduce_blockwise_two_call 1 2 1
launch_and_time_kernel: grid_dim {204800, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {6400, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.23392 ms, 268.966 GB/s, DeviceReduceBlockWise<256,M_C4_S1,K_C64_S1,InSrcVectorDim_0_InSrcVectorSize_1_OutDstVectorSize_1>
error: 0
max_diff: 0, 528, 528
Perf: 2.1791 ms, 771.42 GB/s, DeviceReduceBlockWise<256,M_C32_S1,K_C8_S1,InSrcVectorDim_1_InSrcVectorSize_1_OutDstVectorSize_1> => DeviceReduceBlockWise<256,M_C256_S1,K_C1_S1,InSrcVectorDim_1_InSrcVectorSize_1_OutDstVectorSize_1>
```
......@@ -12,8 +12,8 @@
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
#include "device_reduce_multiblock.hpp"
#include "host_common_util.hpp"
#include "host_reduction.hpp"
#include "reduction_enums.hpp"
......@@ -30,9 +30,8 @@ constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr NanPropagation NanOpt = NanPropagation::PROPAGATE_NAN;
constexpr bool PropagateNan = (NanOpt == NanPropagation::NOT_PROPAGATE_NAN) ? false : true;
constexpr ReduceTensorIndices IndicesOpt = ReduceTensorIndices::NO_INDICES;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
using ReduceOperation = typename reduce_binary_operator<AccDataType, ReduceOpId>::opType;
using InElementwiseOperation =
......@@ -40,85 +39,44 @@ using InElementwiseOperation =
using AccElementwiseOperation =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance = DeviceReduceBlockWise<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
PropagateNan,
false,
256,
4,
64,
1,
1,
0,
1,
1>;
using DeviceReduceInstance = DeviceReduceMultiBlock<InDataType,
AccDataType,
OutDataType,
Rank,
NumReduceDim,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
4,
64,
1,
1,
0,
1,
1>;
static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
{"scales", required_argument, nullptr, 'S'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class SimpleAppArgs
{
template <typename T>
static T getSingleValueFromString(const std::string& valueStr)
{
std::istringstream iss(valueStr);
T ret;
iss >> ret;
return (ret);
};
template <typename T>
static std::vector<T> getTypeValuesFromString(const char* cstr_values)
{
std::string valuesStr(cstr_values);
std::vector<T> values;
std::size_t pos = 0;
std::size_t new_pos;
new_pos = valuesStr.find(',', pos);
while(new_pos != std::string::npos)
{
const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
pos = new_pos + 1;
new_pos = valuesStr.find(',', pos);
};
std::string sliceStr = valuesStr.substr(pos);
T val = getSingleValueFromString<T>(sliceStr);
values.push_back(val);
return (values);
};
private:
int option_index = 0;
public:
std::vector<size_t> inLengths;
std::vector<float> scales;
std::vector<size_t> inLengths = {16, 64, 32, 960};
std::vector<float> scales = {1.0f, 0.0f};
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
bool time_kernel = true;
public:
void show_usage(const char* cmd)
......@@ -126,24 +84,24 @@ class SimpleAppArgs
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
<< std::endl;
std::cout << "--scales or -S, comma separated two float values for alpha and beta"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<< std::endl;
std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg2 -- time kernel (0=n0, 1=yes)" << std::endl;
std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:S:v:l:", long_options, &option_index);
ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
......@@ -154,12 +112,6 @@ class SimpleAppArgs
inLengths = getTypeValuesFromString<size_t>(optarg);
break;
case 'S':
if(!optarg)
throw std::runtime_error("Invalid option format!");
scales = getTypeValuesFromString<float>(optarg);
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
......@@ -181,7 +133,7 @@ class SimpleAppArgs
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
init_method = std::atoi(argv[optind++]);
time_kernel = std::atoi(argv[optind]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(scales.empty())
{
......@@ -202,16 +154,16 @@ int main(int argc, char* argv[])
SimpleAppArgs args;
if(args.processArgs(argc, argv) < 0)
return (-1);
if(argc > 1)
{
if(args.processArgs(argc, argv) < 0)
return (-1);
};
constexpr bool op_support_indices =
(ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
ReduceOpId == ReduceTensorOp::AMAX);
constexpr bool NeedIndices =
(op_support_indices && (IndicesOpt != ReduceTensorIndices::NO_INDICES));
// if input is half type, no reason to use float for indiced reduction operation and must use
// float for non-indiced reduction operation for accuracy
constexpr bool invalid_reduce_1 =
......@@ -225,8 +177,7 @@ int main(int argc, char* argv[])
(op_support_indices && !std::is_same<AccDataType, float>::value);
// indices option can only be used when it is really needed
constexpr bool invalid_reduce_3 =
(!op_support_indices && IndicesOpt != ReduceTensorIndices::NO_INDICES);
constexpr bool invalid_reduce_3 = (!op_support_indices && OutputIndex);
constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);
......@@ -294,9 +245,9 @@ int main(int argc, char* argv[])
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
DeviceMem out_indices_dev(indicesSizeInBytes);
DeviceMem out_index_dev(indicesSizeInBytes);
if(args.do_verification)
{
......@@ -307,38 +258,39 @@ int main(int argc, char* argv[])
Rank,
NumReduceDim,
PropagateNan,
NeedIndices>
OutputIndex>
hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(
alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
};
const auto i_inLengths = to_int_vector(args.inLengths);
const auto i_inStrides = to_int_vector(inStrides);
const auto i_outLengths = to_int_vector(outLengths);
const auto i_outStrides = to_int_vector(outStrides);
std::vector<ck::index_t> i_inLengths;
std::vector<ck::index_t> i_inStrides;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
i_inStrides.assign(inStrides.begin(), inStrides.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce = DeviceReduceInstance{};
auto wsSizeInBytes = reduce.GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
DeviceMem ws_dev(wsSizeInBytes);
auto argument_ptr =
reduce.MakeArgumentPointer(i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer(),
out_indices_dev.GetDeviceBuffer(),
ws_dev.GetDeviceBuffer(),
InElementwiseOperation{static_cast<int>(reduce_total_length)},
AccElementwiseOperation{static_cast<int>(reduce_total_length)});
auto argument_ptr = reduce.MakeArgumentPointer(
i_inLengths,
i_inStrides,
i_outLengths,
i_outStrides,
reduceDims,
alpha,
beta,
in_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
out_index_dev.GetDeviceBuffer(),
InElementwiseOperation{static_cast<int32_t>(reduce_total_length)},
AccElementwiseOperation{static_cast<int32_t>(reduce_total_length)});
if(!reduce.IsSupportedArgument(argument_ptr.get()))
{
......@@ -362,16 +314,18 @@ int main(int argc, char* argv[])
<< std::endl;
bool pass = true;
if(args.do_verification)
{
out_dev.FromDevice(out.mData.data());
pass &= ck::utils::check_err(out.mData, out_ref.mData);
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
if(NeedIndices)
if(OutputIndex)
{
out_indices_dev.FromDevice(out_indices.mData.data());
pass &= ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
out_index_dev.FromDevice(out_indices.mData.data());
pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
};
};
return pass ? 0 : 1;
return (pass ? 0 : 1);
}
#include <iostream>
#include <numeric>
#include <sstream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_multiblock.hpp"
#include "host_common_util.hpp"
#include "host_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
using namespace ck;
using namespace ck::tensor_operation::device;
using InOutDataType = ck::half_t;
using InOutDataType = ck::half_t;
using AccDataType = float;
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr bool PropagateNan = true;
constexpr bool OutputIndex = false;
using ReduceOperation = typename reduce_binary_operator<AccDataType, ReduceOpId>::opType;
using InElementwiseOperation =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;
using PassThroughOp = tensor_operation::element_wise::UnaryIdentic<AccDataType, AccDataType>;
using DeviceReduceInstance_1 = DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
5, // Rank
1, // NumReduceDim
ReduceOperation,
InElementwiseOperation,
PassThroughOp,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
32,
8,
1,
1,
1, // vector dim
1,
1>;
using DeviceReduceInstance_2 = DeviceReduceMultiBlock<InOutDataType,
AccDataType,
InOutDataType,
4, // Rank
1, // NumReduceDim
ReduceOperation,
PassThroughOp,
AccElementwiseOperation,
InMemoryDataOperationEnum::Set,
PropagateNan,
OutputIndex,
false, // HaveIndexInputIfOutputIndex
256,
128,
2,
1,
1,
1, // vector dim
1,
1>;
static bool do_verify;
static int init_method;
static float alpha;
static float beta;
static bool time_kernel;
int main(int argc, char* argv[])
{
// used by the device reduction
const std::vector<int> reduceDims_1 = {4};
const std::vector<int> invariantDims_1 = {0, 1, 2, 3};
const std::vector<int> reduceDims_2 = {3};
const std::vector<int> invariantDims_2 = {0, 1, 2};
// used by the host reduction
const std::vector<int> reduceDims = {3, 4};
const std::vector<int> invariantDims = {0, 1, 2};
const std::vector<size_t> inLengths_1 = {64, 320, 80, 4, 128};
// input lengths of the second reduction, which is also the output lengths of the first
// reduction
const std::vector<size_t> inLengths_2 = {64, 320, 80, 4};
const std::vector<size_t> outLengths = {64, 320, 80};
using namespace ck::host_reduce;
if(argc == 1)
{
do_verify = true;
init_method = 2;
time_kernel = true;
}
else if(argc == 4)
{
do_verify = static_cast<bool>(argv[1]);
init_method = atoi(argv[2]);
time_kernel = static_cast<bool>(atoi(argv[3]));
}
else
{
std::ostringstream ostr;
ostr << "Wrong parameter! " << std::endl
<< "Usage: " << argv[0] << "[verify 0/1] init_method time_kernel" << std::endl;
throw std::runtime_error(ostr.str());
};
alpha = 1.0f;
beta = 0.0f;
Tensor<InOutDataType> in_1(inLengths_1);
Tensor<InOutDataType> out_ref(outLengths);
Tensor<InOutDataType> in_2(inLengths_2); // also the output tensor of the first reduction
Tensor<InOutDataType> out(outLengths);
auto inStrides_1 = in_1.mDesc.GetStrides();
auto inStrides_2 = in_2.mDesc.GetStrides();
auto outStrides = out.mDesc.GetStrides();
size_t invariant_total_length = out.mDesc.GetElementSize();
size_t reduce_total_length = in_1.mDesc.GetElementSize() / invariant_total_length;
std::size_t num_thread = 1;
if(do_verify)
{
switch(init_method)
{
case 0: break;
case 1:
in_1.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
break;
case 2:
in_1.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
break;
default:
in_1.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
if(beta != 0.0f)
out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
num_thread);
}
if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
out.mData[i] = out_ref.mData[i];
};
DeviceMem in_1_dev(sizeof(InOutDataType) * in_1.mDesc.GetElementSpace());
DeviceMem in_2_dev(sizeof(InOutDataType) * in_2.mDesc.GetElementSpace());
DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpace());
in_1_dev.ToDevice(in_1.mData.data());
if(beta != 0.0f)
out_dev.ToDevice(out.mData.data());
if(do_verify)
{
ReductionHost<InOutDataType,
AccDataType,
InOutDataType,
ReduceOpId,
5, // Rank
2, // NumReduceDim
PropagateNan,
OutputIndex>
hostReduce(in_1.mDesc, out_ref.mDesc, invariantDims, reduceDims);
hostReduce.Run(alpha, in_1.mData.data(), beta, out_ref.mData.data(), nullptr);
};
std::vector<ck::index_t> i_inLengths_1;
std::vector<ck::index_t> i_inStrides_1;
std::vector<ck::index_t> i_inLengths_2;
std::vector<ck::index_t> i_inStrides_2;
std::vector<ck::index_t> i_outLengths;
std::vector<ck::index_t> i_outStrides;
i_inLengths_1.assign(inLengths_1.begin(), inLengths_1.end());
i_inStrides_1.assign(inStrides_1.begin(), inStrides_1.end());
i_inLengths_2.assign(inLengths_2.begin(), inLengths_2.end());
i_inStrides_2.assign(inStrides_2.begin(), inStrides_2.end());
i_outLengths.assign(outLengths.begin(), outLengths.end());
i_outStrides.assign(outStrides.begin(), outStrides.end());
auto reduce_1 = DeviceReduceInstance_1{};
auto argument_ptr_1 = reduce_1.MakeArgumentPointer(
i_inLengths_1,
i_inStrides_1,
i_inLengths_2,
i_inStrides_2,
reduceDims_1,
1.0f,
0.0f,
in_1_dev.GetDeviceBuffer(),
nullptr,
in_2_dev.GetDeviceBuffer(),
nullptr,
InElementwiseOperation{static_cast<int32_t>(reduce_total_length)},
PassThroughOp{});
if(!reduce_1.IsSupportedArgument(argument_ptr_1.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
};
auto invoker_ptr_1 = reduce_1.MakeInvokerPointer();
auto reduce_2 = DeviceReduceInstance_2{};
auto argument_ptr_2 = reduce_2.MakeArgumentPointer(
i_inLengths_2,
i_inStrides_2,
i_outLengths,
i_outStrides,
reduceDims_2,
alpha,
beta,
in_2_dev.GetDeviceBuffer(),
nullptr,
out_dev.GetDeviceBuffer(),
nullptr,
PassThroughOp{},
AccElementwiseOperation{static_cast<int32_t>(reduce_total_length)});
if(!reduce_2.IsSupportedArgument(argument_ptr_2.get()))
{
std::cout
<< "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<< std::endl;
};
auto invoker_ptr_2 = reduce_2.MakeInvokerPointer();
float avg_time_1 = invoker_ptr_1->Run(argument_ptr_1.get(), StreamConfig{nullptr, time_kernel});
float avg_time_2 = invoker_ptr_2->Run(argument_ptr_2.get(), StreamConfig{nullptr, time_kernel});
std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
invariant_total_length * sizeof(InOutDataType);
float gb_per_sec = num_bytes / 1.E6 / (avg_time_1 + avg_time_2);
std::cout << "Perf: " << avg_time_1 + avg_time_2 << " ms, " << gb_per_sec << " GB/s, "
<< reduce_1.GetTypeString() << " => " << reduce_2.GetTypeString() << std::endl;
bool pass = true;
if(do_verify)
{
out_dev.FromDevice(out.mData.data());
pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
};
return (pass ? 0 : 1);
}
add_example_executable(example_pool2d_fwd pool2d_fwd.cpp)
add_example_executable(example_pool2d_fwd_fp16 pool2d_fwd_fp16.cpp)
add_example_executable(example_pool2d_fwd_fp32 pool2d_fwd_fp32.cpp)
# Instructions for ```example_pool2d_fwd``` Example
# Instructions for ```example_pool2d_fwd``` Examples
## Run ```example_pool2d_fwd```
## Run ```example_pool2d_fwd_fp16```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: run kernel # of times (>1)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd 1 1 10
./bin/example_pool2d_fwd_fp16 1 1 1
```
Result
......@@ -14,9 +14,28 @@ Result
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up
Warm up 1 time
Start running 10 times...
Perf: 0.415453 ms, 1.37996 TFlops, 749.726 GB/s
error: 0
max_diff: 0, 1, 1
Perf: 0.397436 ms, 1.44252 TFlops, 783.713 GB/s
```
## Run ```example_pool2d_fwd_fp32```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
#arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, RightPx
./bin/example_pool2d_fwd_fp32 1 1 1
```
Result
```
./bin/example_pool2d_fwd_fp32 1 1 1
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
out_n_c_ho_wo: dim 4, lengths {128, 192, 36, 36}, strides {248832, 1, 6912, 192}
launch_and_time_kernel: grid_dim {124416, 1, 1}, block_dim {64, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.01823 ms, 0.563045 TFlops, 611.8 GB/s
```
#pragma once
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
......@@ -13,48 +11,19 @@
#include "host_reduce_util.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "reduction_operator.hpp"
#include "reduction_enums.hpp"
#include "device_pool2d_fwd_nhwc_nhwc.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using InLayout = ck::tensor_layout::convolution::NHWC;
using OutLayout = ck::tensor_layout::convolution::NHWC;
#if 1
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
static constexpr bool NeedIndices = false;
static constexpr bool PropagateNan = false;
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
InDataType, // InDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
ReduceOpId,
NeedIndices,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
4>; // InSrcOutDstVectorSize
template <typename InDataType,
typename OutDataType,
typename AccDataType,
typename IndexDataType,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool NeedIndices>
bool OutputIndex>
static void pool_host_verify(const Tensor<InDataType>& in,
Tensor<OutDataType>& out,
Tensor<int>& out_indices,
Tensor<IndexDataType>& out_indices,
const std::array<ck::index_t, 2>& window_spatial_lengths,
const std::array<ck::index_t, 2>& window_strides,
const std::array<ck::index_t, 2>& in_left_pads,
......@@ -62,26 +31,26 @@ static void pool_host_verify(const Tensor<InDataType>& in,
{
using namespace ck::host_reduce;
const int divider = window_spatial_lengths[0] * window_spatial_lengths[1];
const int32_t divider = window_spatial_lengths[0] * window_spatial_lengths[1];
const auto PreUnaryOp = PreUnaryOpFn<AccDataType, ReduceOpId>(divider);
const auto PosUnaryOp = PosUnaryOpFn<AccDataType, ReduceOpId>(divider);
if constexpr(!NeedIndices)
if constexpr(!OutputIndex)
{
auto opReduce = ReduceOpFn<AccDataType, ReduceOpId>();
auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
auto accuVal = ReduceOpZeroVal<AccDataType, ReduceOpId>();
for(int y = 0; y < window_spatial_lengths[0]; ++y)
for(ck::index_t y = 0; y < window_spatial_lengths[0]; ++y)
{
int hi = ho * window_strides[0] + y - in_left_pads[0];
for(int x = 0; x < window_spatial_lengths[1]; ++x)
ck::index_t hi = ho * window_strides[0] + y - in_left_pads[0];
for(ck::index_t x = 0; x < window_spatial_lengths[1]; ++x)
{
int wi = wo * window_strides[1] + x - in_left_pads[1];
if(hi >= 0 && hi < ck::type_convert<int>(in.mDesc.GetLengths()[2]) && wi >= 0 &&
wi < ck::type_convert<int>(in.mDesc.GetLengths()[3]))
ck::index_t wi = wo * window_strides[1] + x - in_left_pads[1];
if(hi >= 0 && hi < static_cast<ck::index_t>(in.mDesc.GetLengths()[2]) &&
wi >= 0 && wi < static_cast<ck::index_t>(in.mDesc.GetLengths()[3]))
{
AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
......@@ -108,24 +77,24 @@ static void pool_host_verify(const Tensor<InDataType>& in,
auto opReduce = ReduceOpFn2<AccDataType, ReduceOpId>();
auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
auto accuVal = ReduceOpZeroVal<AccDataType, ReduceOpId>();
int accuIndex = 0;
auto accuVal = ReduceOpZeroVal<AccDataType, ReduceOpId>();
IndexDataType accuIndex = 0;
for(int y = 0; y < window_spatial_lengths[0]; ++y)
for(ck::index_t y = 0; y < window_spatial_lengths[0]; ++y)
{
int hi = ho * window_strides[0] + y - in_left_pads[0];
for(int x = 0; x < window_spatial_lengths[1]; ++x)
ck::index_t hi = ho * window_strides[0] + y - in_left_pads[0];
for(ck::index_t x = 0; x < window_spatial_lengths[1]; ++x)
{
int wi = wo * window_strides[1] + x - in_left_pads[1];
ck::index_t wi = wo * window_strides[1] + x - in_left_pads[1];
if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in.mDesc.GetLengths()[3])
{
AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
int currIndex = y * window_spatial_lengths[1] + x;
AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));
IndexDataType currIndex = y * window_spatial_lengths[1] + x;
PreUnaryOp(currVal);
binop_with_nan_check2<AccDataType, PropagateNan>(
binop_with_index_and_nan_check<AccDataType, IndexDataType, PropagateNan>(
opReduce, accuVal, currVal, accuIndex, currIndex);
}
}
......@@ -145,62 +114,46 @@ static void pool_host_verify(const Tensor<InDataType>& in,
};
}
int main(int argc, char* argv[])
template <typename InDataType,
typename OutDataType,
typename AccDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ck::ReduceTensorOp ReduceOpId,
bool PropagateNan,
bool OutputIndex>
bool pool_test(bool do_verification,
int init_method,
bool time_kernel,
ck::index_t N,
ck::index_t C,
ck::index_t Y,
ck::index_t X,
ck::index_t Hi,
ck::index_t Wi,
ck::index_t window_stride_h,
ck::index_t window_stride_w,
ck::index_t in_left_pad_h,
ck::index_t in_left_pad_w,
ck::index_t in_right_pad_h,
ck::index_t in_right_pad_w)
{
using namespace ck::host_reduce;
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// Pool shape
ck::index_t N = 128;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 16)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
N = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
window_stride_h = std::stoi(argv[10]);
window_stride_w = std::stoi(argv[11]);
in_left_pad_h = std::stoi(argv[12]);
in_left_pad_w = std::stoi(argv[13]);
in_right_pad_h = std::stoi(argv[14]);
in_right_pad_w = std::stoi(argv[15]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
using DevicePoolFwdInstance =
ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
InDataType, // InDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
ReduceOpId,
OutputIndex,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
4, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
4>; // InSrcOutDstVectorSize
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;
......@@ -228,9 +181,11 @@ int main(int argc, char* argv[])
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<int> out_indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_ho_wo_host(
f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<int> out_indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
Tensor<IndexDataType> out_indices_n_c_ho_wo_device(
f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;
......@@ -245,25 +200,25 @@ int main(int argc, char* argv[])
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_n_c_ho_wo_device.mDesc.GetElementSpace());
DeviceMem out_indices_device_buf(sizeof(int) *
DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
out_indices_n_c_ho_wo_device.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
auto pool = DevicePoolFwdInstance{};
auto invoker_ptr = pool.MakeInvokerPointer();
auto argument_ptr =
pool.MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<int*>(out_indices_device_buf.GetDeviceBuffer()),
N,
C,
std::array<ck::index_t, 2>{{Hi, Wi}},
std::array<ck::index_t, 2>{{Y, X}},
std::array<ck::index_t, 2>{{Ho, Wo}},
window_strides,
input_left_pads,
input_right_pads);
auto pool = DevicePoolFwdInstance{};
auto invoker_ptr = pool.MakeInvokerPointer();
auto argument_ptr = pool.MakeArgumentPointer(
static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
N,
C,
std::array<ck::index_t, 2>{{Hi, Wi}},
std::array<ck::index_t, 2>{{Y, X}},
std::array<ck::index_t, 2>{{Ho, Wo}},
window_strides,
input_left_pads,
input_right_pads);
if(!pool.IsSupportedArgument(argument_ptr.get()))
{
......@@ -286,14 +241,16 @@ int main(int argc, char* argv[])
<< std::endl;
bool pass = true;
if(do_verification)
{
pool_host_verify<InDataType,
OutDataType,
AccDataType,
IndexDataType,
ReduceOpId,
PropagateNan,
NeedIndices>(in_n_c_hi_wi,
OutputIndex>(in_n_c_hi_wi,
out_n_c_ho_wo_host,
out_indices_n_c_ho_wo_host,
window_spatial_lengths,
......@@ -303,15 +260,16 @@ int main(int argc, char* argv[])
out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
pass &= ck::utils::check_err(out_n_c_ho_wo_device.mData, out_n_c_ho_wo_host.mData);
pass = pass && ck::utils::check_err(out_n_c_ho_wo_device.mData, out_n_c_ho_wo_host.mData);
if constexpr(NeedIndices)
if constexpr(OutputIndex)
{
out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());
pass &= ck::utils::check_err(out_indices_n_c_ho_wo_device.mData,
out_indices_n_c_ho_wo_host.mData);
pass = pass && ck::utils::check_err(out_indices_n_c_ho_wo_device.mData,
out_indices_n_c_ho_wo_host.mData);
};
}
return pass ? 0 : 1;
}
return (pass);
};
#include <iostream>
#include <cstdlib>
#include "config.hpp"
#include "tensor_layout.hpp"
#include "reduction_enums.hpp"
#include "pool2d_fwd_common.hpp"
using InDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using IndexDataType = int32_t;
using InLayout = ck::tensor_layout::convolution::NHWC;
using OutLayout = ck::tensor_layout::convolution::NHWC;
#if 1
static constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
#else
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
#endif
static constexpr bool OutputIndex = false;
static constexpr bool PropagateNan = false;
int main(int argc, char* argv[])
{
using namespace ck::host_reduce;
bool do_verification;
int init_method;
bool time_kernel;
// Pool shape
ck::index_t N = 128;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 1)
{
do_verification = true;
init_method = 1;
time_kernel = true;
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3]));
}
else if(argc == 16)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = static_cast<bool>(std::stoi(argv[3]));
N = std::stoi(argv[4]);
C = std::stoi(argv[5]);
Y = std::stoi(argv[6]);
X = std::stoi(argv[7]);
Hi = std::stoi(argv[8]);
Wi = std::stoi(argv[9]);
window_stride_h = std::stoi(argv[10]);
window_stride_w = std::stoi(argv[11]);
in_left_pad_h = std::stoi(argv[12]);
in_left_pad_w = std::stoi(argv[13]);
in_right_pad_h = std::stoi(argv[14]);
in_right_pad_w = std::stoi(argv[15]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
bool pass = pool_test<InDataType,
OutDataType,
AccDataType,
IndexDataType,
InLayout,
OutLayout,
ReduceOpId,
PropagateNan,
OutputIndex>(do_verification,
init_method,
time_kernel,
N,
C,
Y,
X,
Hi,
Wi,
window_stride_h,
window_stride_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
in_right_pad_w);
return (pass ? 0 : 1);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment