Commit b2290854 authored by rocking's avatar rocking
Browse files

Merge commit '3e6c2610' into gemm_norm

parents 253f7ef2 3e6c2610
......@@ -22,7 +22,7 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances =
using device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances =
std::tuple<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
......@@ -45,11 +45,11 @@ using device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances =
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances(
void add_device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances,
device_gemm_xdl_c_shuffle_int8_int8_int8_mk_nk_mn_instances{});
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instances{});
}
} // namespace device_gemm_instance
......
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[k, n] = c[m, n]
using device_gemm_xdl_f64_f64_f64_km_kn_mn_instances =
std::tuple<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl< F64, F64, F64, F64, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 128, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 2, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 2, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 2, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_f64_f64_f64_km_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances, device_gemm_xdl_f64_f64_f64_km_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[k, m] * b[n, k] = c[m, n]
using device_gemm_xdl_f64_f64_f64_km_nk_mn_instances =
std::tuple<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl< F64, F64, F64, F64, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 2, 16, 16, 4, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 128, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 2, 16, 16, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Col, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 2, 16, 16, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_f64_f64_f64_km_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances, device_gemm_xdl_f64_f64_f64_km_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances =
std::tuple<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl< F64, F64, F64, F64, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 128, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 2, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Row, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 2, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances, device_gemm_xdl_f64_f64_f64_mk_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F64 = double;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// Compilation parameters for a[m, k] * b[n, k] = c[m, n]
using device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances =
std::tuple<
// clang-format off
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//##########| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//##########| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 128, 4, 2, 16, 16, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 64, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 64, 128, 4, 2, 16, 16, 4, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 64, 4, 2, 16, 16, 4, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 128, 64, 4, 2, 16, 16, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 256, 64, 128, 4, 2, 16, 16, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 128, 32, 4, 2, 16, 16, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 128, 32, 128, 4, 2, 16, 16, 2, 4, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 64, 32, 4, 2, 16, 16, 4, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>,
DeviceGemmXdl< F64, F64, F64, F64, Row, Col, Row, PassThrough, PassThrough, PassThrough, GemmDefault, 64, 32, 64, 4, 2, 16, 16, 2, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 2, 2, true, 7, 1>
// clang-format on
>;
void add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances(
std::vector<DeviceGemmPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(instances, device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -16,26 +16,11 @@ set(DEVICE_REDUCE_INSTANCE_SOURCE
device_reduce_instance_threadwise_i8_i32_i8.cpp;
device_reduce_instance_threadwise_i8_i8_i8.cpp;
device_reduce_instance_threadwise_b16_f32_b16.cpp;
device_reduce_instance_blockwise_second_call_f16_f16_f16.cpp;
device_reduce_instance_blockwise_second_call_f32_f32_f16.cpp;
device_reduce_instance_blockwise_second_call_f32_f32_f32.cpp;
device_reduce_instance_blockwise_second_call_f64_f64_f32.cpp;
device_reduce_instance_blockwise_second_call_f64_f64_f64.cpp;
device_reduce_instance_blockwise_second_call_i32_i32_i8.cpp;
device_reduce_instance_blockwise_second_call_i8_i8_i8.cpp;
device_reduce_instance_blockwise_second_call_f32_f32_b16.cpp;
device_reduce_instance_multiblock_atomic_add_f16_f32_f32.cpp;
device_reduce_instance_multiblock_atomic_add_f32_f32_f32.cpp;
device_reduce_instance_multiblock_atomic_add_f32_f64_f32.cpp;
device_reduce_instance_multiblock_atomic_add_f64_f64_f64.cpp;
device_reduce_instance_multiblock_atomic_add_b16_f32_f32.cpp;
device_reduce_instance_multiblock_partial_reduce_f16_f16_f16.cpp;
device_reduce_instance_multiblock_partial_reduce_f16_f32_f16.cpp;
device_reduce_instance_multiblock_partial_reduce_f32_f32_f32.cpp;
device_reduce_instance_multiblock_partial_reduce_f32_f64_f32.cpp;
device_reduce_instance_multiblock_partial_reduce_f64_f64_f64.cpp;
device_reduce_instance_multiblock_partial_reduce_i8_i32_i8.cpp;
device_reduce_instance_multiblock_partial_reduce_i8_i8_i8.cpp;
device_reduce_instance_multiblock_partial_reduce_b16_f32_b16.cpp;
)
add_library(device_reduce_instance OBJECT ${DEVICE_REDUCE_INSTANCE_SOURCE})
......
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 0, 0, 0, 4, 3); // for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 0, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 0, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 0, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 5, 0, 0, 4, 3); // for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 5, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 5, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 5, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 7, 0, 0, 4, 3); // for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 7, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 7, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 7, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 0, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 0, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 0, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 1, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 2, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 1, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 3, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 1, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, bhalf_t, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 0, 0, 0, 4, 3); // for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 0, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 0, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 0, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 5, 0, 0, 4, 3); // for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 5, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 5, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 5, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 7, 0, 0, 4, 3); // for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 7, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 7, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, half_t, 7, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 0, 0, 0, 4, 3); // for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 0, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 0, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 0, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 5, 0, 0, 4, 3); // for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 5, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 5, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 5, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 7, 0, 0, 4, 3); // for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 7, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 7, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 7, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 0, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 0, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 0, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 1, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 2, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 1, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 3, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 1, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(float, float, float, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 0, 0, 0, 4, 3); // for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 0, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 0, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 0, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 5, 0, 0, 4, 3); // for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 5, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 5, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 5, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 7, 0, 0, 4, 3); // for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 7, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 7, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, float, 7, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 0, 0, 0, 4, 3); // for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 0, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 0, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 0, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 5, 0, 0, 4, 3); // for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 5, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 5, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 5, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 7, 0, 0, 4, 3); // for NORM2
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 7, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 7, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 7, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 0, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 0, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 0, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 1, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 2, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 1, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 3, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 1, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(double, double, double, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 0, 0, 0, 4, 3); // for ADD
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 0, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 0, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 0, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 5, 0, 0, 4, 3); // for AVG
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 5, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 5, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int32_t, int32_t, int8_t, 5, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_blockwise_second_call.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 0, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 0, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 0, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 0, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 0, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 0, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 1, 4, 3); // for MIN
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 2, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 1, 4, 3); // for MAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 3, 0, 1, 2, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 1, 4, 3); // for AMAX
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 1, 4, 4);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 1, 4, 1);
ADD_BLOCKWISE_SECOND_CALL_INST_BY_ID(int8_t, int8_t, int8_t, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
#include "device_reduce_instance_multiblock_atomic_add.hpp"
namespace ck {
namespace tensor_operation {
......@@ -7,10 +7,14 @@ namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, double, float, 7, 0, 0, 4, 3); // for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, double, float, 7, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, double, float, 7, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, double, float, 7, 0, 0, 2, 1);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 0, 0, 0, 4, 3); // for ADD
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 0, 0, 0, 4, 4);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 0, 0, 0, 4, 1);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 0, 0, 0, 2, 1);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 5, 0, 0, 4, 3); // for AVG
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 5, 0, 0, 4, 4);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 5, 0, 0, 4, 1);
ADD_MULTIBLOCK_ATOMIC_ADD_INST_BY_ID(double, double, double, 5, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
......
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 0, 0, 0, 4, 3); // for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 0, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 0, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 0, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 5, 0, 0, 4, 3); // for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 5, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 5, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 5, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 7, 0, 0, 4, 3); // for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 7, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 7, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 7, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 0, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 0, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 0, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 1, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 2, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 1, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 3, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 1, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(bhalf_t, float, bhalf_t, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 2, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 3, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, half_t, half_t, 4, 0, 1, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 0, 0, 0, 4, 3); // for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 0, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 0, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 0, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 5, 0, 0, 4, 3); // for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 5, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 5, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 5, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 7, 0, 0, 4, 3); // for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 7, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 7, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(half_t, float, half_t, 7, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 0, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 0, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 0, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 1, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 2, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 1, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 3, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 1, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 4, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 7, 0, 0, 4, 3); // for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 7, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 7, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(float, float, float, 7, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include "device_reduce_instance_multiblock_partial_reduce.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {
// clang-format off
// InDataType | AccDataType | OutDataType | ReduceOpId | NanPropaOpt | IndicesOpt | Rank | NumReduceDim
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 0, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 0, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 0, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 1, 4, 3); // for MIN
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 2, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 1, 4, 3); // for MAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 3, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 1, 4, 3); // for AMAX
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 1, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 1, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 4, 0, 1, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 7, 0, 0, 4, 3); // for NORM2
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 7, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 7, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 7, 0, 0, 2, 1);
// Will be moved to use MultiBlockAtomicAdd
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 0, 0, 0, 4, 3); // for ADD
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 0, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 0, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 0, 0, 0, 2, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 5, 0, 0, 4, 3); // for AVG
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 5, 0, 0, 4, 4);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 5, 0, 0, 4, 1);
ADD_MULTIBLOCK_PARTIAL_REDUCE_INST_BY_ID(double, double, double, 5, 0, 0, 2, 1);
// clang-format on
} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment