Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
ae8b307a
Unverified
Commit
ae8b307a
authored
May 29, 2023
by
Po Yen Chen
Committed by
GitHub
May 29, 2023
Browse files
Merge branch 'develop' into feature/support-readfirstlane-for-object-types
parents
ad8bc60b
ac9e01e2
Changes
129
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
569 additions
and
227 deletions
+569
-227
Jenkinsfile
Jenkinsfile
+26
-6
client_example/18_groupnorm/groupnorm_swish.cpp
client_example/18_groupnorm/groupnorm_swish.cpp
+4
-3
client_example/19_pool_fwd/CMakeLists.txt
client_example/19_pool_fwd/CMakeLists.txt
+5
-0
client_example/19_pool_fwd/avg_pool3d_fwd.cpp
client_example/19_pool_fwd/avg_pool3d_fwd.cpp
+199
-0
client_example/19_pool_fwd/max_pool2d_fwd.cpp
client_example/19_pool_fwd/max_pool2d_fwd.cpp
+193
-0
example/02_gemm_bilinear/CMakeLists.txt
example/02_gemm_bilinear/CMakeLists.txt
+3
-1
example/03_gemm_bias_relu/CMakeLists.txt
example/03_gemm_bias_relu/CMakeLists.txt
+3
-1
example/04_gemm_add_add_fastgelu/CMakeLists.txt
example/04_gemm_add_add_fastgelu/CMakeLists.txt
+17
-15
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+8
-7
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
...e/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
+15
-16
example/13_pool2d_fwd/pool2d_fwd_common.hpp
example/13_pool2d_fwd/pool2d_fwd_common.hpp
+40
-132
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
+4
-5
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
+4
-5
example/14_gemm_quantization/CMakeLists.txt
example/14_gemm_quantization/CMakeLists.txt
+4
-2
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
+22
-20
example/17_convnd_bwd_data/CMakeLists.txt
example/17_convnd_bwd_data/CMakeLists.txt
+4
-3
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+3
-1
example/20_grouped_conv_bwd_weight/CMakeLists.txt
example/20_grouped_conv_bwd_weight/CMakeLists.txt
+6
-5
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+3
-1
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+6
-4
No files found.
Jenkinsfile
View file @
ae8b307a
...
@@ -493,10 +493,11 @@ def Build_CK(Map conf=[:]){
...
@@ -493,10 +493,11 @@ def Build_CK(Map conf=[:]){
{
{
cmake_build
(
conf
)
cmake_build
(
conf
)
dir
(
"build"
){
dir
(
"build"
){
//run tests and examples
sh
'make -j\$(( \$(nproc) / 2 )) check'
if
(
navi_node
==
0
){
if
(
navi_node
==
0
){
//run tests and examples on all nodes except Navi
//we only need the ckProfiler to run the performance tests, so we pack and stash it
sh
'make -j check'
//do not stash profiler on Navi nodes
//we only need the ckProfiler to run the performance tests, so we pack and stash it
sh
'tar -zcvf ckProfiler.tar.gz bin/ckProfiler'
sh
'tar -zcvf ckProfiler.tar.gz bin/ckProfiler'
stash
"ckProfiler.tar.gz"
stash
"ckProfiler.tar.gz"
}
}
...
@@ -686,12 +687,31 @@ pipeline {
...
@@ -686,12 +687,31 @@ pipeline {
{
{
parallel
parallel
{
{
stage
(
"Build CK and run Tests on MI100/MI200/MI300"
)
{
when
{
beforeAgent
true
expression
{
params
.
RUN_FULL_QA
.
toBoolean
()
}
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
}
}
stage
(
"Build CK and run Tests on MI100/MI200"
)
stage
(
"Build CK and run Tests on MI100/MI200"
)
{
{
when
{
beforeAgent
true
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
}
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908
,
gfx90a" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908
;
gfx90a" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
}
steps
{
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
...
@@ -705,8 +725,8 @@ pipeline {
...
@@ -705,8 +725,8 @@ pipeline {
}
}
agent
{
label
rocmnode
(
"navi21"
)
}
agent
{
label
rocmnode
(
"navi21"
)
}
environment
{
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install
-DGPU_TARGETS="gfx1030"
"""
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030
;gfx1100;gfx1101;gfx1102
" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
}
steps
{
steps
{
...
...
client_example/18_groupnorm/groupnorm_swish.cpp
View file @
ae8b307a
...
@@ -131,11 +131,12 @@ int main(int argc, char* argv[])
...
@@ -131,11 +131,12 @@ int main(int argc, char* argv[])
}
}
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
// run the best intance
if
(
found
)
{
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
<<
std
::
endl
;
...
...
client_example/19_pool_fwd/CMakeLists.txt
0 → 100644
View file @
ae8b307a
add_executable
(
client_max_pool2d_fwd max_pool2d_fwd.cpp
)
target_link_libraries
(
client_max_pool2d_fwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_avg_pool3d_fwd avg_pool3d_fwd.cpp
)
target_link_libraries
(
client_avg_pool3d_fwd PRIVATE composable_kernel::device_operations
)
\ No newline at end of file
client_example/19_pool_fwd/avg_pool3d_fwd.cpp
0 → 100644
View file @
ae8b307a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
constexpr
ck
::
index_t
InOutRank
=
5
;
constexpr
ck
::
index_t
WindowRank
=
3
;
#if 0
constexpr auto ReduceOpId = ck::ReduceTensorOp::MAX;
constexpr bool OutputIndex = false;
#else
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
constexpr
bool
OutputIndex
=
false
;
#endif
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Z
=
2
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Di
=
30
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_d
=
2
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_d
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_d
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
ck
::
index_t
Do
=
(
Di
+
in_left_pad_d
+
in_right_pad_d
-
Z
)
/
window_stride_d
+
1
;
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
// Pool API only support the order of NCDHW
std
::
vector
<
ck
::
index_t
>
in_length
=
{
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
vector
<
ck
::
index_t
>
out_length
=
{
N
,
C
,
Do
,
Ho
,
Wo
};
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
=
{
Z
,
Y
,
X
};
std
::
vector
<
ck
::
index_t
>
window_strides
=
{
window_stride_d
,
window_stride_h
,
window_stride_w
};
std
::
vector
<
ck
::
index_t
>
input_left_pads
=
{
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
};
std
::
vector
<
ck
::
index_t
>
input_right_pads
=
{
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
};
std
::
size_t
in_tensor_size
=
N
*
C
*
Di
*
Hi
*
Wi
;
std
::
size_t
out_tensor_size
=
N
*
C
*
Do
*
Ho
*
Wo
;
// tensor layout = NDHWC
std
::
vector
<
ck
::
index_t
>
in_tensor_stride
=
{
Di
*
C
*
Hi
*
Wi
,
1
,
C
*
Hi
*
Wi
,
Wi
*
C
,
C
};
std
::
vector
<
ck
::
index_t
>
out_tensor_stride
=
{
Do
*
C
*
Ho
*
Wo
,
1
,
C
*
Ho
*
Wo
,
Wo
*
C
,
C
};
SimpleDeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_tensor_size
);
SimpleDeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_tensor_size
);
SimpleDeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_tensor_size
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
in_length
,
window_spatial_lengths
,
out_length
,
in_tensor_stride
,
out_tensor_stride
,
out_tensor_stride
,
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
,
4
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
in_tensor_size
*
sizeof
(
InDataType
)
+
out_tensor_size
*
sizeof
(
OutDataType
);
if
constexpr
(
OutputIndex
)
num_bytes
+=
out_tensor_size
*
sizeof
(
IndexDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
in_length
,
window_spatial_lengths
,
out_length
,
in_tensor_stride
,
out_tensor_stride
,
out_tensor_stride
,
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
,
4
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/19_pool_fwd/max_pool2d_fwd.cpp
0 → 100644
View file @
ae8b307a
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/pool2d_fwd.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
constexpr
ck
::
index_t
InOutRank
=
4
;
constexpr
ck
::
index_t
WindowRank
=
2
;
#if 1
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
constexpr
bool
OutputIndex
=
true
;
#else
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
constexpr
bool
OutputIndex
=
false
;
#endif
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
// Pool API only support the order of NCHW
std
::
vector
<
ck
::
index_t
>
in_length
=
{
N
,
C
,
Hi
,
Wi
};
std
::
vector
<
ck
::
index_t
>
out_length
=
{
N
,
C
,
Ho
,
Wo
};
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
=
{
Y
,
X
};
std
::
vector
<
ck
::
index_t
>
window_strides
=
{
window_stride_h
,
window_stride_w
};
std
::
vector
<
ck
::
index_t
>
input_left_pads
=
{
in_left_pad_h
,
in_left_pad_w
};
std
::
vector
<
ck
::
index_t
>
input_right_pads
=
{
in_right_pad_h
,
in_right_pad_w
};
std
::
size_t
in_tensor_size
=
N
*
C
*
Hi
*
Wi
;
std
::
size_t
out_tensor_size
=
N
*
C
*
Ho
*
Wo
;
// tensor layout = NHWC
std
::
vector
<
ck
::
index_t
>
in_tensor_stride
=
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
};
std
::
vector
<
ck
::
index_t
>
out_tensor_stride
=
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
};
SimpleDeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_tensor_size
);
SimpleDeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_tensor_size
);
SimpleDeviceMem
out_indices_device_buf
(
sizeof
(
IndexDataType
)
*
out_tensor_size
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DevicePoolFwd
<
InOutRank
,
WindowRank
,
InDataType
,
OutDataType
,
IndexDataType
,
ReduceOpId
,
OutputIndex
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
in_length
,
window_spatial_lengths
,
out_length
,
in_tensor_stride
,
out_tensor_stride
,
out_tensor_stride
,
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
in_tensor_size
*
sizeof
(
InDataType
)
+
out_tensor_size
*
sizeof
(
OutDataType
);
if
constexpr
(
OutputIndex
)
num_bytes
+=
out_tensor_size
*
sizeof
(
IndexDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
// run the best intance
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
in_length
,
window_spatial_lengths
,
out_length
,
in_tensor_stride
,
out_tensor_stride
,
out_tensor_stride
,
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
example/02_gemm_bilinear/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
OR GPU_TARGETS MATCHES
"gfx1101"
OR GPU_TARGETS MATCHES
"gfx1102"
)
add_example_executable
(
example_gemm_bilinear_wmma_fp16 gemm_bilinear_wmma_fp16.cpp
)
add_example_executable
(
example_gemm_bilinear_wmma_fp16 gemm_bilinear_wmma_fp16.cpp
)
endif
()
endif
()
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_bilinear_xdl_fp16 gemm_bilinear_xdl_fp16.cpp
)
endif
()
example/03_gemm_bias_relu/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_gemm_bias_relu_xdl_fp16 gemm_bias_relu_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_bias_relu_xdl_fp16 gemm_bias_relu_xdl_fp16.cpp
)
endif
()
\ No newline at end of file
example/04_gemm_add_add_fastgelu/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_gemm_add_add_fastgelu_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_gemm_add_add_fastgelu_xdl
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_bf16 gemm_add_add_fastgelu_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_fp32 gemm_add_add_fastgelu_xdl_fp32.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_int4 gemm_add_add_fastgelu_xdl_int4.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_int4 gemm_add_add_fastgelu_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp
)
add_example_executable
(
example_gemm_add_add_fastgelu_xdl_int8 gemm_add_add_fastgelu_xdl_int8.cpp
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_bf16
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_bf16
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp16
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp16
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp32
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_fp32
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int8
)
add_dependencies
(
example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_int8
)
endif
()
\ No newline at end of file
example/09_convnd_fwd/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
endif
()
add_example_executable
(
example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp
)
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_convnd_fwd_reduce_xdl
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
add_example_executable
(
example_convnd_fwd_max_xdl_int4 convnd_fwd_max_xdl_int4.cpp
)
endif
(
USE_BITINT_EXTENSION_INT4
)
add_dependencies
(
example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int4
)
endif
()
endif
(
USE_BITINT_EXTENSION_INT4
)
\ No newline at end of file
example/13_pool2d_fwd/pool2d_fwd_common.hpp
View file @
ae8b307a
...
@@ -17,115 +17,11 @@
...
@@ -17,115 +17,11 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
template
<
typename
InDataType
,
template
<
typename
InDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
ComputeDataType
,
typename
IndexDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
bool
PropagateNan
,
bool
OutputIndex
>
static
void
pool_host_verify
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
IndexDataType
>&
out_indices
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_strides
,
const
std
::
array
<
ck
::
index_t
,
2
>&
in_left_pads
,
const
std
::
array
<
ck
::
index_t
,
2
>&
/*in_right_pads*/
)
{
const
int32_t
reduceLength
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
using
ReduceOperation
=
typename
ck
::
reduce_binary_operator
<
ReduceOpId
>::
opType
;
auto
elementwise_ops
=
ck
::
reduce_unary_operator
<
ReduceOpId
,
true
,
true
>::
GetElementwiseOperator
(
reduceLength
);
auto
in_elementwise_op
=
std
::
get
<
0
>
(
elementwise_ops
);
auto
acc_elementwise_op
=
std
::
get
<
1
>
(
elementwise_ops
);
if
constexpr
(
!
OutputIndex
)
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
2
])
&&
wi
>=
0
&&
wi
<
static_cast
<
ck
::
index_t
>
(
in
.
mDesc
.
GetLengths
()[
3
]))
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
using
Accumulation
=
ck
::
detail
::
AccumulateWithIndexAndNanCheck
<
PropagateNan
,
ReduceOperation
,
AccDataType
,
IndexDataType
>
;
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOperation
::
template
GetIdentityValue
<
AccDataType
>();
IndexDataType
accuIndex
=
0
;
for
(
ck
::
index_t
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
ck
::
index_t
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
ck
::
index_t
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
ck
::
index_t
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in
.
mDesc
.
GetLengths
()[
3
])
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
IndexDataType
currIndex
=
y
*
window_spatial_lengths
[
1
]
+
x
;
in_elementwise_op
(
currVal
,
currVal
);
Accumulation
::
Calculate
(
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
acc_elementwise_op
(
accuVal
,
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
out_indices
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
};
}
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
IndexDataType
,
typename
IndexDataType
,
typename
InLayout
,
typename
InLayout
,
typename
OutLayout
,
typename
OutLayout
,
...
@@ -150,9 +46,10 @@ bool pool_test(bool do_verification,
...
@@ -150,9 +46,10 @@ bool pool_test(bool do_verification,
{
{
using
DevicePoolFwdInstance
=
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
InDataType
,
// InDataType
OutDataType
,
// OutDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
IndexDataType
,
// IndexDataType
ComputeDataType
,
// ComputeDataType
ReduceOpId
,
ReduceOpId
,
OutputIndex
,
OutputIndex
,
64
,
// BlockSize
64
,
// BlockSize
...
@@ -165,10 +62,10 @@ bool pool_test(bool do_verification,
...
@@ -165,10 +62,10 @@ bool pool_test(bool do_verification,
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
{
{
Y
,
X
}
}
;
const
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
{
Y
,
X
};
const
std
::
array
<
ck
::
index_t
,
2
>
window_strides
{
{
window_stride_h
,
window_stride_w
}
}
;
const
std
::
vector
<
ck
::
index_t
>
window_strides
{
window_stride_h
,
window_stride_w
};
const
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
{
{
in_left_pad_h
,
in_left_pad_w
}
}
;
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_h
,
in_left_pad_w
};
const
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
{
{
in_right_pad_h
,
in_right_pad_w
}
}
;
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_h
,
in_right_pad_w
};
// tensor layout
// tensor layout
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
...
@@ -219,14 +116,16 @@ bool pool_test(bool do_verification,
...
@@ -219,14 +116,16 @@ bool pool_test(bool do_verification,
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
N
,
{
N
,
C
,
Hi
,
Wi
},
C
,
{
Y
,
X
},
std
::
array
<
ck
::
index_t
,
2
>
{{
Hi
,
Wi
}},
{
N
,
C
,
Ho
,
Wo
},
std
::
array
<
ck
::
index_t
,
2
>
{{
Y
,
X
}},
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
},
std
::
array
<
ck
::
index_t
,
2
>
{{
Ho
,
Wo
}},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
window_strides
,
window_strides
,
input_left_pads
,
input_left_pads
,
input_right_pads
);
input_right_pads
,
{
2
,
3
});
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
{
...
@@ -252,19 +151,28 @@ bool pool_test(bool do_verification,
...
@@ -252,19 +151,28 @@ bool pool_test(bool do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
pool_host_verify
<
InDataType
,
using
ReferencePoolingFwdInstance
=
OutDataType
,
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
4
,
AccDataType
,
2
,
IndexDataType
,
InDataType
,
ReduceOpId
,
OutDataType
,
PropagateNan
,
ComputeDataType
,
OutputIndex
>
(
in_n_c_hi_wi
,
IndexDataType
,
out_n_c_ho_wo_host
,
ReduceOpId
,
out_indices_n_c_ho_wo_host
,
PropagateNan
,
window_spatial_lengths
,
OutputIndex
>
;
window_strides
,
input_left_pads
,
auto
ref_pooling
=
ReferencePoolingFwdInstance
{};
input_right_pads
);
auto
ref_pooling_invoker
=
ref_pooling
.
MakeInvoker
();
auto
ref_pooling_argument
=
ref_pooling
.
MakeArgument
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
ref_pooling_invoker
.
Run
(
ref_pooling_argument
);
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
...
...
example/13_pool2d_fwd/pool2d_fwd_fp16.cpp
View file @
ae8b307a
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
...
@@ -10,9 +9,9 @@
...
@@ -10,9 +9,9 @@
#include "pool2d_fwd_common.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
Acc
DataType
=
float
;
using
Compute
DataType
=
float
;
using
IndexDataType
=
int32_t
;
using
IndexDataType
=
int32_t
;
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
bool
pass
=
pool_test
<
InDataType
,
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
OutDataType
,
Acc
DataType
,
Compute
DataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
InLayout
,
OutLayout
,
OutLayout
,
...
...
example/13_pool2d_fwd/pool2d_fwd_fp32.cpp
View file @
ae8b307a
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_enums.hpp"
...
@@ -10,9 +9,9 @@
...
@@ -10,9 +9,9 @@
#include "pool2d_fwd_common.hpp"
#include "pool2d_fwd_common.hpp"
using
InDataType
=
float
;
using
InDataType
=
float
;
using
OutDataType
=
float
;
using
OutDataType
=
float
;
using
Acc
DataType
=
float
;
using
Compute
DataType
=
float
;
using
IndexDataType
=
int32_t
;
using
IndexDataType
=
int32_t
;
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
...
@@ -91,7 +90,7 @@ int main(int argc, char* argv[])
bool
pass
=
pool_test
<
InDataType
,
bool
pass
=
pool_test
<
InDataType
,
OutDataType
,
OutDataType
,
Acc
DataType
,
Compute
DataType
,
IndexDataType
,
IndexDataType
,
InLayout
,
InLayout
,
OutLayout
,
OutLayout
,
...
...
example/14_gemm_quantization/CMakeLists.txt
View file @
ae8b307a
...
@@ -2,5 +2,7 @@
...
@@ -2,5 +2,7 @@
add_example_executable
(
example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp
)
add_example_executable
(
example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp
)
# xdlops
# xdlops
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
\ No newline at end of file
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
endif
()
\ No newline at end of file
example/16_gemm_multi_d_multi_reduces/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_gemm_reduce_xdl
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
add_custom_target
(
example_gemm_reduce_xdl
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
add_custom_target
(
example_gemm_reduce_xdl_max
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_custom_target
(
example_gemm_reduce_xdl_mean_meansquare
)
add_custom_target
(
example_gemm_add_add_mean_meansquare_xdl
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_executable
(
example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_example_executable
(
example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp
)
add_dependencies
(
example_gemm_reduce_xdl_max
add_dependencies
(
example_gemm_reduce_xdl_max
example_gemm_max_xdl_bf16
example_gemm_max_xdl_bf16
example_gemm_max_xdl_fp16
example_gemm_max_xdl_fp16
example_gemm_max_xdl_fp32
example_gemm_max_xdl_fp32
example_gemm_max_xdl_int8
)
example_gemm_max_xdl_int8
)
add_dependencies
(
example_gemm_reduce_xdl_mean_meansquare
add_dependencies
(
example_gemm_reduce_xdl_mean_meansquare
example_gemm_mean_meansquare_xdl_fp16
example_gemm_mean_meansquare_xdl_fp16
example_gemm_mean_meansquare_xdl_fp32
example_gemm_mean_meansquare_xdl_fp32
example_gemm_mean_meansquare_xdl_bf16
example_gemm_mean_meansquare_xdl_bf16
example_gemm_add_addsquare_xdl_int8
)
example_gemm_add_addsquare_xdl_int8
)
add_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_dependencies
(
example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16
)
add_dependencies
(
example_gemm_reduce_xdl
add_dependencies
(
example_gemm_reduce_xdl
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_mean_meansquare
example_gemm_reduce_xdl_max
example_gemm_reduce_xdl_max
example_gemm_add_add_mean_meansquare_xdl
)
example_gemm_add_add_mean_meansquare_xdl
)
if
(
USE_BITINT_EXTENSION_INT4
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
add_example_executable
(
example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp
)
add_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
add_dependencies
(
example_gemm_reduce_xdl_max example_gemm_max_xdl_int4
)
endif
()
endif
()
endif
()
example/17_convnd_bwd_data/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
add_example_executable
(
example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_xdl_fp16 PRIVATE utility
)
endif
()
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
add_example_executable
(
example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp
)
target_link_libraries
(
example_convnd_bwd_data_dl_fp16 PRIVATE utility
)
target_link_libraries
(
example_convnd_bwd_data_dl_fp16 PRIVATE utility
)
example/18_batched_gemm_reduce/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
endif
()
example/20_grouped_conv_bwd_weight/CMakeLists.txt
View file @
ae8b307a
add_custom_target
(
example_grouped_conv_bwd_weight
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_custom_target
(
example_grouped_conv_bwd_weight
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp
)
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
add_dependencies
(
example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16
example_grouped_conv_bwd_weight_xdl_bf16
)
example_grouped_conv_bwd_weight_xdl_bf16
)
endif
()
add_custom_target
(
example_grouped_conv_bwd_weight_dl
)
add_custom_target
(
example_grouped_conv_bwd_weight_dl
)
...
...
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
ae8b307a
...
@@ -18,7 +18,9 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
...
@@ -18,7 +18,9 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Dl op doesn't support split_k > 1
// Dl op doesn't support split_k > 1
// TODO: Add Dl op split_k > 1 support
// TODO: Add Dl op split_k > 1 support
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
))
{
{
split_k
=
2
;
split_k
=
2
;
}
}
...
...
example/21_gemm_layernorm/CMakeLists.txt
View file @
ae8b307a
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_welford_fp16 gemm_bias_relu_add_layernorm_xdl_welford_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_naive_fp16 gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_naive_fp16 gemm_layernorm_xdl_naive_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_naive_single_kernel_fp16 gemm_xdl_layernorm_naive_single_kernel_fp16.cpp
)
endif
()
Prev
1
2
3
4
5
…
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment