Commit a7676df9 authored by myamlak's avatar myamlak
Browse files

Merge remote-tracking branch 'origin/develop' into myamlak/cgemm

parents 6ebcb667 aafc3ac2
#include <iostream> #include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <math.h>
#include "check_err.hpp" #include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -13,7 +8,6 @@ ...@@ -13,7 +8,6 @@
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp" #include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp" #include "device_binary_elementwise.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
...@@ -26,7 +20,7 @@ using EltwiseComputeDataType = F32; ...@@ -26,7 +20,7 @@ using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add; using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device:: using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<F16, F16, CDataType, EltwiseComputeDataType, Add, 2, 8>; DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 2, 8>;
template <typename HostTensorA, template <typename HostTensorA,
typename HostTensorB, typename HostTensorB,
...@@ -37,6 +31,8 @@ template <typename HostTensorA, ...@@ -37,6 +31,8 @@ template <typename HostTensorA,
void host_broadcast2D( void host_broadcast2D(
HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, int N, Functor functor) HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, int N, Functor functor)
{ {
using ctype = ck::remove_reference_t<decltype(C(0, 0))>;
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
for(int n = 0; n < N; ++n) for(int n = 0; n < N; ++n)
...@@ -53,7 +49,7 @@ void host_broadcast2D( ...@@ -53,7 +49,7 @@ void host_broadcast2D(
ComputeDataType Bm = static_cast<ComputeDataType>(B(m)); ComputeDataType Bm = static_cast<ComputeDataType>(B(m));
functor(Cmn, Amn, Bm); functor(Cmn, Amn, Bm);
} }
C(m, n) = static_cast<ComputeDataType>(Cmn); C(m, n) = static_cast<ctype>(Cmn);
} }
} }
} }
......
#include <iostream> #include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <math.h>
#include "check_err.hpp" #include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
...@@ -13,7 +8,6 @@ ...@@ -13,7 +8,6 @@
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp" #include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp" #include "device_binary_elementwise.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
...@@ -26,7 +20,7 @@ using EltwiseComputeDataType = F32; ...@@ -26,7 +20,7 @@ using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add; using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device:: using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<F16, F16, CDataType, EltwiseComputeDataType, Add, 1, 8>; DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 1, 8>;
template <typename HostTensorA, template <typename HostTensorA,
typename HostTensorB, typename HostTensorB,
...@@ -36,13 +30,15 @@ template <typename HostTensorA, ...@@ -36,13 +30,15 @@ template <typename HostTensorA,
void host_elementwise1D( void host_elementwise1D(
HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, Functor functor) HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, Functor functor)
{ {
using ctype = ck::remove_reference_t<decltype(C(0))>;
for(int m = 0; m < M; ++m) for(int m = 0; m < M; ++m)
{ {
ComputeDataType Am = static_cast<ComputeDataType>(A(m)); ComputeDataType Am = static_cast<ComputeDataType>(A(m));
ComputeDataType Bm = static_cast<ComputeDataType>(B(m)); ComputeDataType Bm = static_cast<ComputeDataType>(B(m));
ComputeDataType Cm = 0; ComputeDataType Cm = 0;
functor(Cm, Am, Bm); functor(Cm, Am, Bm);
C(m) = static_cast<ComputeDataType>(Cm); C(m) = static_cast<ctype>(Cm);
} }
} }
......
#include <iostream> #include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib> #include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include <math.h>
#include "check_err.hpp" #include "check_err.hpp"
#include "config.hpp" #include "config.hpp"
#include "device.hpp" #include "device.hpp"
#include "host_reduce_util.hpp"
#include "host_tensor.hpp" #include "host_tensor.hpp"
#include "host_tensor_generator.hpp" #include "host_tensor_generator.hpp"
#include "host_utility.hpp"
#include "device_tensor.hpp" #include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp" #include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp" #include "device_binary_elementwise.hpp"
using F16 = ck::half_t; using F16 = ck::half_t;
...@@ -27,7 +21,7 @@ using EltwiseComputeDataType = F32; ...@@ -27,7 +21,7 @@ using EltwiseComputeDataType = F32;
using Add = ck::tensor_operation::binary_element_wise::Add; using Add = ck::tensor_operation::binary_element_wise::Add;
using DeviceElementwiseAddInstance = ck::tensor_operation::device:: using DeviceElementwiseAddInstance = ck::tensor_operation::device::
DeviceBinaryElementwise<F16, F16, CDataType, EltwiseComputeDataType, Add, 4, 8>; DeviceBinaryElementwise<ABDataType, ABDataType, CDataType, EltwiseComputeDataType, Add, 4, 8>;
template <typename HostTensorA, template <typename HostTensorA,
typename HostTensorB, typename HostTensorB,
...@@ -40,6 +34,8 @@ void host_elementwise4D(HostTensorC& C, ...@@ -40,6 +34,8 @@ void host_elementwise4D(HostTensorC& C,
const std::vector<std::size_t>& shape, const std::vector<std::size_t>& shape,
Functor functor) Functor functor)
{ {
using ctype = ck::remove_reference_t<decltype(C(0, 0, 0, 0))>;
for(std::size_t n = 0; n < shape[0]; ++n) for(std::size_t n = 0; n < shape[0]; ++n)
for(std::size_t c = 0; c < shape[1]; ++c) for(std::size_t c = 0; c < shape[1]; ++c)
for(std::size_t h = 0; h < shape[2]; ++h) for(std::size_t h = 0; h < shape[2]; ++h)
...@@ -49,7 +45,7 @@ void host_elementwise4D(HostTensorC& C, ...@@ -49,7 +45,7 @@ void host_elementwise4D(HostTensorC& C,
ComputeDataType b_val = static_cast<ComputeDataType>(B(n, c, h, w)); ComputeDataType b_val = static_cast<ComputeDataType>(B(n, c, h, w));
ComputeDataType c_val = 0; ComputeDataType c_val = 0;
functor(c_val, a_val, b_val); functor(c_val, a_val, b_val);
C(n, c, h, w) = static_cast<ComputeDataType>(c_val); C(n, c, h, w) = static_cast<ctype>(c_val);
} }
} }
...@@ -75,14 +71,15 @@ int main() ...@@ -75,14 +71,15 @@ int main()
b_m_device_buf.ToDevice(b_m.mData.data()); b_m_device_buf.ToDevice(b_m.mData.data());
auto broadcastAdd = DeviceElementwiseAddInstance{}; auto broadcastAdd = DeviceElementwiseAddInstance{};
auto argument = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(), auto argument = broadcastAdd.MakeArgumentPointer(
b_m_device_buf.GetDeviceBuffer(), a_m_device_buf.GetDeviceBuffer(),
c_m_device_buf.GetDeviceBuffer(), b_m_device_buf.GetDeviceBuffer(),
ck::to_int_vector(nchw), c_m_device_buf.GetDeviceBuffer(),
ck::to_int_vector(a_m.mDesc.GetStrides()), ck::convert_vector_element_type<std::size_t, ck::index_t>(nchw),
ck::to_int_vector(b_m.mDesc.GetStrides()), ck::convert_vector_element_type<std::size_t, ck::index_t>(a_m.mDesc.GetStrides()),
ck::to_int_vector(c_m.mDesc.GetStrides()), ck::convert_vector_element_type<std::size_t, ck::index_t>(b_m.mDesc.GetStrides()),
Add{}); ck::convert_vector_element_type<std::size_t, ck::index_t>(c_m.mDesc.GetStrides()),
Add{});
if(!broadcastAdd.IsSupportedArgument(argument.get())) if(!broadcastAdd.IsSupportedArgument(argument.get()))
{ {
......
...@@ -19,18 +19,15 @@ template <typename ADataType, ...@@ -19,18 +19,15 @@ template <typename ADataType,
index_t ScalarPerVector> index_t ScalarPerVector>
struct DeviceBinaryElementwise : public BaseOperator struct DeviceBinaryElementwise : public BaseOperator
{ {
DeviceBinaryElementwise(index_t threadPerBlock = 256) DeviceBinaryElementwise(index_t blockSize = 256) : BaseOperator(), blockSize_(blockSize) {}
: BaseOperator(), threadPerBlock_(threadPerBlock)
{
}
static constexpr auto I0 = Number<0>{}; static constexpr auto I0 = Number<0>{};
template <typename Desc_M0> template <typename Desc_M0>
static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t threadPerBlock) static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t blockSize)
{ {
const auto m0 = desc_m0.GetLength(I0); const auto m0 = desc_m0.GetLength(I0);
const index_t loop_step = gridSize * threadPerBlock * ScalarPerVector; const index_t loop_step = gridSize * blockSize * ScalarPerVector;
const auto pad = math::integer_least_multiple(m0, loop_step) - m0; const auto pad = math::integer_least_multiple(m0, loop_step) - m0;
const auto desc_m0_pad = const auto desc_m0_pad =
transform_tensor_descriptor(desc_m0, transform_tensor_descriptor(desc_m0,
...@@ -40,10 +37,10 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -40,10 +37,10 @@ struct DeviceBinaryElementwise : public BaseOperator
return desc_m0_pad; return desc_m0_pad;
} }
static auto MakeDescriptor_M0(const std::vector<int>& shape, static auto MakeDescriptor_M0(const std::vector<index_t>& shape,
const std::vector<int>& stride, const std::vector<index_t>& stride,
index_t gridSize, index_t gridSize,
index_t threadPerBlock) index_t blockSize)
{ {
auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<Dim>{}); auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<Dim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<Dim>{}); auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<Dim>{});
...@@ -60,10 +57,10 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -60,10 +57,10 @@ struct DeviceBinaryElementwise : public BaseOperator
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<Dim>{})), make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<Dim>{})),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, threadPerBlock); return PadDescriptor_M0_1d(desc_m0, gridSize, blockSize);
} }
else else
return PadDescriptor_M0_1d(desc, gridSize, threadPerBlock); return PadDescriptor_M0_1d(desc, gridSize, blockSize);
} }
using GridDesc_M0 = decltype(MakeDescriptor_M0({1, 1}, {1, 1}, 1, 1)); using GridDesc_M0 = decltype(MakeDescriptor_M0({1, 1}, {1, 1}, 1, 1));
...@@ -80,26 +77,28 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -80,26 +77,28 @@ struct DeviceBinaryElementwise : public BaseOperator
Argument(const ADataType* p_a, Argument(const ADataType* p_a,
const BDataType* p_b, const BDataType* p_b,
CDataType* p_c, CDataType* p_c,
const std::vector<int>& shape, const std::vector<index_t>& shape,
const std::vector<int>& stride_a, const std::vector<index_t>& stride_a,
const std::vector<int>& stride_b, const std::vector<index_t>& stride_b,
const std::vector<int>& stride_c, const std::vector<index_t>& stride_c,
ElementwiseFunctor functor, ElementwiseFunctor functor,
index_t threadPerBlock) index_t blockSize)
: p_a_(p_a), : p_a_(p_a),
p_b_(p_b), p_b_(p_b),
p_c_(p_c), p_c_(p_c),
shape_(shape),
functor_(functor), functor_(functor),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{ {
a_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_a, gridSize_, threadPerBlock); a_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_a, gridSize_, blockSize);
b_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_b, gridSize_, threadPerBlock); b_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_b, gridSize_, blockSize);
c_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_c, gridSize_, threadPerBlock); c_grid_desc_m0_ = MakeDescriptor_M0(shape, stride_c, gridSize_, blockSize);
} }
const ADataType* p_a_; const ADataType* p_a_;
const BDataType* p_b_; const BDataType* p_b_;
CDataType* p_c_; CDataType* p_c_;
std::vector<int> shape_;
GridDesc_M0 a_grid_desc_m0_; GridDesc_M0 a_grid_desc_m0_;
GridDesc_M0 b_grid_desc_m0_; GridDesc_M0 b_grid_desc_m0_;
GridDesc_M0 c_grid_desc_m0_; GridDesc_M0 c_grid_desc_m0_;
...@@ -109,21 +108,21 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -109,21 +108,21 @@ struct DeviceBinaryElementwise : public BaseOperator
struct Invoker : public BaseInvoker struct Invoker : public BaseInvoker
{ {
Invoker(index_t threadPerBlock) : BaseInvoker(), threadPerBlock_(threadPerBlock) {} Invoker(index_t blockSize) : BaseInvoker(), blockSize_(blockSize) {}
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
const auto kernel = kernel_elementwise_1d<GridwiseBinEltwise, const auto kernel = kernel_binary_elementwise_1d<GridwiseBinEltwise,
ADataType, ADataType,
BDataType, BDataType,
CDataType, CDataType,
GridDesc_M0, GridDesc_M0,
ElementwiseFunctor>; ElementwiseFunctor>;
float elapsed_time = launch_and_time_kernel(stream_config, float elapsed_time = launch_and_time_kernel(stream_config,
kernel, kernel,
dim3(arg.gridSize_), dim3(arg.gridSize_),
dim3(threadPerBlock_), dim3(blockSize_),
0, 0,
arg.p_a_, arg.p_a_,
arg.p_b_, arg.p_b_,
...@@ -142,7 +141,7 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -142,7 +141,7 @@ struct DeviceBinaryElementwise : public BaseOperator
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config); return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
} }
index_t threadPerBlock_; index_t blockSize_;
}; };
bool IsSupportedArgument(const BaseArgument* p_arg) override bool IsSupportedArgument(const BaseArgument* p_arg) override
...@@ -152,10 +151,7 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -152,10 +151,7 @@ struct DeviceBinaryElementwise : public BaseOperator
if(pArg == nullptr) if(pArg == nullptr)
return false; return false;
// shape[0] * shape[1] * shape[2] * ... if(pArg->shape_.back() % ScalarPerVector != 0)
const auto m0 = pArg->c_grid_desc_m0_.GetLength(I0);
if(m0 % ScalarPerVector != 0)
return false; return false;
return true; return true;
...@@ -164,10 +160,10 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -164,10 +160,10 @@ struct DeviceBinaryElementwise : public BaseOperator
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a, std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b, const void* p_b,
void* p_c, void* p_c,
std::vector<int> shape, std::vector<index_t> shape,
std::vector<int> stride_a, std::vector<index_t> stride_a,
std::vector<int> stride_b, std::vector<index_t> stride_b,
std::vector<int> stride_c, std::vector<index_t> stride_c,
ElementwiseFunctor functor) ElementwiseFunctor functor)
{ {
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a), return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
...@@ -178,12 +174,12 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -178,12 +174,12 @@ struct DeviceBinaryElementwise : public BaseOperator
stride_b, stride_b,
stride_c, stride_c,
functor, functor,
threadPerBlock_); blockSize_);
} }
std::unique_ptr<BaseInvoker> MakeInvokerPointer() std::unique_ptr<BaseInvoker> MakeInvokerPointer()
{ {
return std::make_unique<Invoker>(Invoker{threadPerBlock_}); return std::make_unique<Invoker>(Invoker{blockSize_});
} }
std::string GetTypeString() const override std::string GetTypeString() const override
...@@ -200,7 +196,7 @@ struct DeviceBinaryElementwise : public BaseOperator ...@@ -200,7 +196,7 @@ struct DeviceBinaryElementwise : public BaseOperator
return str.str(); return str.str();
} }
index_t threadPerBlock_; index_t blockSize_;
}; };
} // namespace device } // namespace device
......
...@@ -71,10 +71,10 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -71,10 +71,10 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
static constexpr auto ScalarPerVector = Number<4>{}; static constexpr auto ScalarPerVector = Number<4>{};
template <typename Desc_M0> template <typename Desc_M0>
static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t threadPerBlock) static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t blockSize)
{ {
const auto m0 = desc_m0.GetLength(I0); const auto m0 = desc_m0.GetLength(I0);
const index_t loop_step = gridSize * threadPerBlock * ScalarPerVector; const index_t loop_step = gridSize * blockSize * ScalarPerVector;
const auto pad = math::integer_least_multiple(m0, loop_step) - m0; const auto pad = math::integer_least_multiple(m0, loop_step) - m0;
const auto desc_m0_pad = const auto desc_m0_pad =
transform_tensor_descriptor(desc_m0, transform_tensor_descriptor(desc_m0,
...@@ -87,7 +87,7 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -87,7 +87,7 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
static auto MakeDescriptor_M0(const std::vector<int>& shape, static auto MakeDescriptor_M0(const std::vector<int>& shape,
const std::vector<int>& stride, const std::vector<int>& stride,
index_t gridSize, index_t gridSize,
index_t threadPerBlock) index_t blockSize)
{ {
auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<2>{}); auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<2>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<2>{}); auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<2>{});
...@@ -100,7 +100,7 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -100,7 +100,7 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<2>{})), make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<2>{})),
make_tuple(Sequence<0>{})); make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, threadPerBlock); return PadDescriptor_M0_1d(desc_m0, gridSize,blockSize);
} }
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA) static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
...@@ -536,18 +536,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle ...@@ -536,18 +536,18 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
GridDesc_M0, GridDesc_M0,
Substract, Substract,
ScalarPerVector>; ScalarPerVector>;
const auto add_kernel = kernel_elementwise_1d<GridwiseBinAdd, const auto add_kernel = kernel_binary_elementwise_1d<GridwiseBinAdd,
CDataType, CDataType,
CDataType, CDataType,
CDataType, CDataType,
GridDesc_M0, GridDesc_M0,
Add>; Add>;
const auto substract_kernel = kernel_elementwise_1d<GridwiseBinSubstract, const auto substract_kernel = kernel_binary_elementwise_1d<GridwiseBinSubstract,
CDataType, CDataType,
CDataType, CDataType,
CDataType, CDataType,
GridDesc_M0, GridDesc_M0,
Substract>; Substract>;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K)) if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{ {
......
...@@ -7,6 +7,12 @@ namespace binary_element_wise { ...@@ -7,6 +7,12 @@ namespace binary_element_wise {
struct Add struct Add
{ {
__host__ __device__ constexpr void
operator()(double& dst, const double& src1, const double& src2) const
{
dst = src1 + src2;
}
__host__ __device__ constexpr void __host__ __device__ constexpr void
operator()(float& dst, const float& src1, const float& src2) const operator()(float& dst, const float& src1, const float& src2) const
{ {
...@@ -32,6 +38,12 @@ struct Add ...@@ -32,6 +38,12 @@ struct Add
struct Substract struct Substract
{ {
__host__ __device__ constexpr void __host__ __device__ constexpr void
operator()(double& dst, const double& src1, const double& src2) const
{
dst = src1 - src2;
}
__host__ __device__ constexpr void
operator()(float& dst, const float& src1, const float& src2) const operator()(float& dst, const float& src1, const float& src2) const
{ {
dst = src1 - src2; dst = src1 - src2;
...@@ -43,7 +55,6 @@ struct Substract ...@@ -43,7 +55,6 @@ struct Substract
dst = src1 - src2; dst = src1 - src2;
} }
// TO FIX!!!
__host__ __device__ constexpr void __host__ __device__ constexpr void
operator()(bhalf_t& dst, const bhalf_t& src1, const bhalf_t& src2) const operator()(bhalf_t& dst, const bhalf_t& src1, const bhalf_t& src2) const
{ {
......
...@@ -13,13 +13,13 @@ template <typename GridwiseBinEltwise, ...@@ -13,13 +13,13 @@ template <typename GridwiseBinEltwise,
typename CDataType, typename CDataType,
typename GridDesc_M0, typename GridDesc_M0,
typename ElementwiseFunctor> typename ElementwiseFunctor>
__global__ void kernel_elementwise_1d(const ADataType* __restrict__ p_a_global, __global__ void kernel_binary_elementwise_1d(const ADataType* __restrict__ p_a_global,
const BDataType* __restrict__ p_b_global, const BDataType* __restrict__ p_b_global,
CDataType* __restrict__ p_c_global, CDataType* __restrict__ p_c_global,
const GridDesc_M0 a_grid_desc_m0, const GridDesc_M0 a_grid_desc_m0,
const GridDesc_M0 b_grid_desc_m0, const GridDesc_M0 b_grid_desc_m0,
const GridDesc_M0 c_grid_desc_m0, const GridDesc_M0 c_grid_desc_m0,
const ElementwiseFunctor functor) const ElementwiseFunctor functor)
{ {
GridwiseBinEltwise::Run(p_a_global, GridwiseBinEltwise::Run(p_a_global,
p_b_global, p_b_global,
...@@ -45,7 +45,7 @@ struct GridwiseBinaryElementwise_1D ...@@ -45,7 +45,7 @@ struct GridwiseBinaryElementwise_1D
using PassThrough = tensor_operation::element_wise::PassThrough; using PassThrough = tensor_operation::element_wise::PassThrough;
static __device__ __host__ auto CalculateElementwiseIndex() static __device__ auto CalculateElementwiseIndex()
{ {
const index_t global_thread_id = get_thread_global_1d_id(); const index_t global_thread_id = get_thread_global_1d_id();
return make_multi_index(global_thread_id * ScalarPerVector); return make_multi_index(global_thread_id * ScalarPerVector);
...@@ -70,7 +70,7 @@ struct GridwiseBinaryElementwise_1D ...@@ -70,7 +70,7 @@ struct GridwiseBinaryElementwise_1D
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> b_thread_buf; StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> b_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> c_thread_buf; StaticBuffer<AddressSpaceEnum::Vgpr, ComputeDataType, ScalarPerVector, true> c_thread_buf;
const auto thread_to_global_offset = CalculateElementwiseIndex(); const auto thread_store_global_offset = CalculateElementwiseIndex();
auto a_global_load = auto a_global_load =
ThreadwiseTensorSliceTransfer_v2<ADataType, ThreadwiseTensorSliceTransfer_v2<ADataType,
...@@ -82,7 +82,7 @@ struct GridwiseBinaryElementwise_1D ...@@ -82,7 +82,7 @@ struct GridwiseBinaryElementwise_1D
0, // SrcVectorDim 0, // SrcVectorDim
ScalarPerVector, ScalarPerVector,
1, // SrcScalarStrideInVector 1, // SrcScalarStrideInVector
false>{a_grid_desc_m0, thread_to_global_offset}; false>{a_grid_desc_m0, thread_store_global_offset};
auto b_global_load = auto b_global_load =
ThreadwiseTensorSliceTransfer_v2<BDataType, ThreadwiseTensorSliceTransfer_v2<BDataType,
...@@ -94,7 +94,7 @@ struct GridwiseBinaryElementwise_1D ...@@ -94,7 +94,7 @@ struct GridwiseBinaryElementwise_1D
0, // SrcVectorDim 0, // SrcVectorDim
ScalarPerVector, ScalarPerVector,
1, // SrcScalarStrideInVector 1, // SrcScalarStrideInVector
false>{b_grid_desc_m0, thread_to_global_offset}; false>{b_grid_desc_m0, thread_store_global_offset};
auto c_global_write = auto c_global_write =
ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType, ThreadwiseTensorSliceTransfer_v1r3<ComputeDataType,
...@@ -109,13 +109,13 @@ struct GridwiseBinaryElementwise_1D ...@@ -109,13 +109,13 @@ struct GridwiseBinaryElementwise_1D
InMemoryDataOperationEnum::Set, InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector 1, // DstScalarStrideInVector
false>{ false>{
c_grid_desc_m0, thread_to_global_offset, PassThrough{}}; c_grid_desc_m0, thread_store_global_offset, PassThrough{}};
const index_t threadPerBlock = get_block_size(); const index_t blockSize = get_block_size();
const index_t blockPerGrid = get_grid_size(); const index_t blockPerGrid = get_grid_size();
const auto m0 = c_grid_desc_m0.GetLength(I0); const auto m0 = c_grid_desc_m0.GetLength(I0);
const index_t loop_step = blockPerGrid * threadPerBlock * ScalarPerVector; const index_t loop_step = blockPerGrid * blockSize * ScalarPerVector;
const auto loop_step_index = make_multi_index(loop_step); const auto loop_step_index = make_multi_index(loop_step);
index_t num_iter = m0 / (loop_step); index_t num_iter = m0 / (loop_step);
do do
......
#pragma once
#include <vector>
namespace ck {
template <typename Src, typename Dst>
inline std::vector<Dst> convert_vector_element_type(const std::vector<Src>& inData)
{
std::vector<Dst> outData;
for(auto elem : inData)
outData.push_back(static_cast<Dst>(elem));
return (outData);
};
}; // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment