Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a4c89647
Commit
a4c89647
authored
Jun 16, 2023
by
Bartlomiej Kocot
Committed by
Bartłomiej Kocot
Jun 18, 2023
Browse files
Support bf16/f32/f16 and NHWGC conv2d_bwd_data
parent
0d911822
Changes
18
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
1093 additions
and
77 deletions
+1093
-77
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+5
-3
include/ck/tensor_operation/operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
...operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
+57
-5
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
...ration_instance/gpu/grouped_convolution_backward_data.hpp
+99
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/CMakeLists.txt
...ation_instance/gpu/grouped_conv2d_bwd_data/CMakeLists.txt
+5
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
...d_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
...ed_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
+17
-69
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
...ed_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_instance.hpp
..._bwd_data/device_grouped_conv2d_bwd_data_xdl_instance.hpp
+138
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
...d_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
...ed_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
+47
-0
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
...ed_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
+47
-0
profiler/README.md
profiler/README.md
+38
-0
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
...r/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
+257
-0
profiler/src/CMakeLists.txt
profiler/src/CMakeLists.txt
+2
-0
profiler/src/profile_grouped_conv_bwd_data.cpp
profiler/src/profile_grouped_conv_bwd_data.cpp
+157
-0
test/CMakeLists.txt
test/CMakeLists.txt
+1
-0
test/grouped_convnd_bwd_data/CMakeLists.txt
test/grouped_convnd_bwd_data/CMakeLists.txt
+4
-0
test/grouped_convnd_bwd_data/grouped_convnd_bwd_data.cpp
test/grouped_convnd_bwd_data/grouped_convnd_bwd_data.cpp
+78
-0
No files found.
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
a4c89647
...
...
@@ -807,7 +807,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
// vector load for A matrix from global memory to LDS
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
)
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
)
{
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
ConvK
%
ABlockTransferSrcScalarPerVector
==
0
))
{
...
...
@@ -862,7 +863,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
// vector store for E
if
constexpr
(
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
GNHWC
>
)
if
constexpr
(
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
GNHWC
>
||
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
NHWGC
>
)
{
// vector store C matrix into global memory
if
(
!
(
ConvC
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
...
...
@@ -876,7 +878,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
// Gridwise GEMM size
for
(
std
::
size
_t
i
=
0
;
i
<
arg
.
a_grid_desc_ak0_m_ak1_container_
.
size
()
;
i
++
)
for
(
index
_t
i
=
0
;
i
<
arg
.
num_gemm_
;
i
++
)
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_container_
[
i
],
arg
.
b_grid_desc_n_k_container_
[
i
],
...
...
include/ck/tensor_operation/operator_transform/transform_conv_bwd_data_to_gemm_v1.hpp
View file @
a4c89647
...
...
@@ -13,6 +13,57 @@
namespace
ck
{
namespace
tensor_operation
{
namespace
{
template
<
index_t
NDimSpatial
,
typename
ALayout
,
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
ConvBwdDataSpecialization
>
constexpr
auto
make_out_n_ho_wo_k_grid_desc
(
const
index_t
N
,
const
index_t
Ho
,
const
index_t
Wo
,
const
index_t
K
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_strides
)
{
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
)
{
const
index_t
NStride
=
out_g_n_k_wos_strides
[
1
];
const
index_t
HiStride
=
out_g_n_k_wos_strides
[
3
];
const
index_t
WiStride
=
out_g_n_k_wos_strides
[
4
];
const
auto
CStride
=
Number
<
1
>
{};
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
*
Ho
*
Wo
,
K
),
make_tuple
(
WiStride
,
CStride
));
}
else
{
return
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Ho
,
Wo
,
K
),
make_tuple
(
NStride
,
HiStride
,
WiStride
,
CStride
));
}
}
else
{
// assume packed
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
Filter1x1Stride1Pad0
)
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
}
else
{
return
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Ho
,
Wo
,
K
));
}
}
}
}
// namespace
template
<
index_t
NDimSpatial
,
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
ConvBwdDataSpecialization
,
...
...
@@ -29,11 +80,12 @@ struct TransformConvBwdDataToGemm_v1
template
<
typename
ALayout
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>,
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
),
bool
>::
type
=
false
>
static
auto
MakeADescriptor_AK0_M_AK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/*
out_g_n_k_wos_strides
*/
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
out_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
wei_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* wei_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
in_g_n_c_wis_lengths
,
...
...
@@ -70,9 +122,9 @@ struct TransformConvBwdDataToGemm_v1
const
index_t
AK0
=
K
/
AK1
;
// assume packed
const
auto
out_n_ho_wo_k_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Ho
,
Wo
,
K
));
make_out_n_ho_wo_k_grid_desc
<
NDimSpatial
,
ALayout
,
ConvBwdDataSpecialization
>
(
N
,
Ho
,
Wo
,
K
,
out_g_n_k_wos_strides
);
if
constexpr
(
ConvBwdDataSpecialization
==
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization
::
...
...
@@ -80,7 +132,7 @@ struct TransformConvBwdDataToGemm_v1
{
// A: output tensor
const
auto
out_gemmak0_gemmmraw_gemmak1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
))
,
out_n_ho_wo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
View file @
a4c89647
...
...
@@ -30,6 +30,76 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
...
...
@@ -78,6 +148,35 @@ struct DeviceOperationInstanceFactory<
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
NHWGC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
...
...
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/CMakeLists.txt
View file @
a4c89647
add_instance_library
(
device_grouped_conv2d_bwd_data_instance
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
)
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
View file @
a4c89647
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
void
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
GNHWK
,
GKYXC
,
Empty_Tuple
,
GNHWC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_instance.hpp
0 → 100644
View file @
a4c89647
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_bf16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f16_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/grouped_conv2d_bwd_data/device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvBwdDataMultipleD
<
2
,
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
// 1. Default
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataDefault
>
{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances
(
instances
,
device_grouped_conv2d_bwd_data_xdl_f32_instances
<
NHWGK
,
GKYXC
,
Empty_Tuple
,
NHWGC
,
ConvBwdDataFilter1x1Stride1Pad0
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
profiler/README.md
View file @
a4c89647
...
...
@@ -102,4 +102,42 @@ arg.b_grid_desc_k0_n0_n1_k1_{2048, 4096, 2}
arg.e_grid_desc_m_n_
{
4096, 4096
}
....
Best Perf: 58.0306 ms, 37.8942 TFlops, 27.7545 GB/s
## Profile grouped convolution backward data kernels
```
bash
# arg1: tensor operation (grouped_conv_bwd_data: Grouped Convolution Backward Data)
# arg2: data type (0: Output fp32, Weight fp32, Input fp32
# 1: Output fp16, Weight fp16, Input fp16
# 2: Output bf16, Weight bf16, Input bf16
# arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
# 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
# arg4: verification (0: no, 1: yes)
# arg5: initialization (0: no init, 1: integer value, 2: decimal value)
# arg6: print tensor value (0: no; 1: yes)
# arg7: time kernel (0: no, 1: yes)
# Following arguments (depending on number of spatial dims):
# Number of spatial dimensions (1=Conv1d, 2=Conv2d, 3=Conv3d)
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
################ op datatype layout verify init log time Ndims G N K C Y X Hi Wi Sy Sx Dy Dx LeftPy LeftPx RightPy RightPx
./bin/ckProfiler grouped_conv_bwd_data 1 0 1 1 0 1 2 32 4 192 192 3 3 28 28 1 1 1 1 1 1 1 1
```
Result (MI100, FP16, GNHWC_GKYXC_GNHWK)
```
out: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
wei: dim 5, lengths {32, 192, 192, 3, 3}, strides {331776, 1728, 1, 576, 192}
in: dim 5, lengths {32, 4, 192, 28, 28}, strides {602112, 150528, 1, 5376, 192}
....
Best configuration parameters:
name: DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<
256,
128,
256,
32,
8,
2,
Default
,
32,
32,
2,
4,
8,
4,
1,
1
>
avg_time: 0.768321
tflops: 86.6679
GB/s: 127.947
```
profiler/include/profiler/profile_grouped_conv_bwd_data_impl.hpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_data_multiple_d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
namespace
ck
{
namespace
profiler
{
template
<
ck
::
index_t
NDimSpatial
,
typename
OutLayout
,
typename
WeiLayout
,
typename
InLayout
,
typename
OutDataType
,
typename
WeiDataType
,
typename
InDataType
>
bool
profile_grouped_conv_bwd_data_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
const
auto
out_element_op
=
OutElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
in_element_op
=
InElementOp
{};
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
InDataType
>
in_host
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in_device
(
in_g_n_c_wis_desc
);
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in: "
<<
in_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
case
2
:
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
break
;
default:
out
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_device
.
mDesc
.
GetElementSpaceSize
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
// reset input to zero
in_device_buf
.
SetZero
();
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
in_host
.
SetZero
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_host
,
wei
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
out_element_op
,
wei_element_op
,
in_element_op
);
ref_invoker
.
Run
(
ref_argument
);
}
std
::
string
best_op_name
;
float
best_avg_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
bool
pass
=
true
;
auto
run_impl
=
[
&
](
auto
&
op_ptr
,
auto
&
argument_ptr
)
{
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
// re-init output to zero before profiling next kernel
in_device_buf
.
SetZero
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
in_device_buf
.
FromDevice
(
in_device
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
in_device
,
in_host
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"output : "
,
out
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"weight: "
,
wei
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_host : "
,
in_host
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in_device: "
,
in_device
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
};
// do GEMM
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
OutElementOp
,
WeiElementOp
,
InElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
out_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
wei_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
in_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
out_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
out_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
wei_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
wei_strides
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
in_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
in_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
out_element_op
,
wei_element_op
,
in_element_op
);
run_impl
(
op_ptr
,
argument_ptr
);
}
std
::
cout
<<
"Best configuration parameters:"
<<
"
\n
name: "
<<
best_op_name
<<
"
\n
avg_time: "
<<
best_avg_time
<<
"
\n
tflops: "
<<
best_tflops
<<
"
\n
GB/s: "
<<
best_gb_per_sec
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/src/CMakeLists.txt
View file @
a4c89647
...
...
@@ -35,6 +35,7 @@ set(PROFILER_SOURCES
profile_contraction_bilinear.cpp
profile_contraction_scale.cpp
profile_batched_gemm_multi_d.cpp
profile_grouped_conv_bwd_data.cpp
)
set
(
PROFILER_EXECUTABLE ckProfiler
)
...
...
@@ -79,4 +80,5 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_contraction_bilinear
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_contraction_scale_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_pool_fwd_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_batched_gemm_multi_d_instance
)
target_link_libraries
(
${
PROFILER_EXECUTABLE
}
PRIVATE device_grouped_conv2d_bwd_data_instance
)
rocm_install
(
TARGETS
${
PROFILER_EXECUTABLE
}
COMPONENT profiler
)
profiler/src/profile_grouped_conv_bwd_data.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace
{
enum
struct
ConvLayout
{
GNHWC_GKYXC_GNHWK
,
// 0
NHWGC_GKYXC_NHWGK
,
// 1
};
enum
struct
ConvDataType
{
F32_F32_F32
,
// 0
F16_F16_F16
,
// 1
BF16_BF16_BF16
,
// 2
};
#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"
static
void
print_helper_msg
()
{
std
::
cout
// clang-format off
<<
"arg1: tensor operation ("
OP_NAME
": "
OP_DESC
")
\n
"
<<
"arg2: data type (0: Output fp32, Weight fp32, Input fp32
\n
"
<<
" 1: Output fp16, Weight fp16, Input fp16
\n
"
<<
" 2: Output bf16, Weight bf16, Input bf16
\n
"
<<
"arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]
\n
"
<<
" 1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])
\n
"
<<
"arg4: verification (0: no, 1: yes)
\n
"
<<
"arg5: initialization (0: no init, 1: integer value, 2: decimal value)
\n
"
<<
"arg6: print tensor value (0: no; 1: yes)
\n
"
<<
"arg7: time kernel (0: no, 1: yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
// clang-format on
}
}
// namespace
int
profile_grouped_conv_bwd_data
(
int
argc
,
char
*
argv
[])
{
// 8 for control, 1 for num_dim_spatial
if
(
argc
<
9
)
{
print_helper_msg
();
return
1
;
}
const
auto
data_type
=
static_cast
<
ConvDataType
>
(
std
::
stoi
(
argv
[
2
]));
const
auto
layout
=
static_cast
<
ConvLayout
>
(
std
::
stoi
(
argv
[
3
]));
const
bool
do_verification
=
std
::
stoi
(
argv
[
4
]);
const
int
init_method
=
std
::
stoi
(
argv
[
5
]);
const
bool
do_log
=
std
::
stoi
(
argv
[
6
]);
const
bool
time_kernel
=
std
::
stoi
(
argv
[
7
]);
const
int
num_dim_spatial
=
std
::
stoi
(
argv
[
8
]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if
(
argc
!=
8
+
1
+
4
+
6
*
num_dim_spatial
)
{
print_helper_msg
();
return
1
;
}
const
auto
params
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
9
,
argv
);
using
F32
=
float
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
auto
profile
=
[
&
](
auto
num_dim_spatial_tmp
,
auto
out_layout
,
auto
wei_layout
,
auto
in_layout
,
auto
wei_type
,
auto
out_type
,
auto
in_type
)
{
constexpr
ck
::
index_t
NDimSpatial
=
num_dim_spatial_tmp
.
value
;
using
OutLayout
=
decltype
(
out_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
InLayout
=
decltype
(
in_layout
);
using
OutDataType
=
decltype
(
out_type
);
using
WeiDataType
=
decltype
(
wei_type
);
using
InDataType
=
decltype
(
in_type
);
bool
pass
=
ck
::
profiler
::
profile_grouped_conv_bwd_data_impl
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
InLayout
,
OutDataType
,
WeiDataType
,
InDataType
>
(
do_verification
,
init_method
,
do_log
,
time_kernel
,
params
);
return
pass
?
0
:
1
;
};
// GNHWC_GKYXC_GNHWK
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
GNHWC_GKYXC_GNHWK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I2
,
GNHWK
{},
GKYXC
{},
GNHWC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
// NHWGC_GKYXC_NHWGK
else
if
(
num_dim_spatial
==
2
&&
layout
==
ConvLayout
::
NHWGC_GKYXC_NHWGK
)
{
if
(
data_type
==
ConvDataType
::
F32_F32_F32
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
F32
{},
F32
{},
F32
{});
}
else
if
(
data_type
==
ConvDataType
::
F16_F16_F16
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
F16
{},
F16
{},
F16
{});
}
else
if
(
data_type
==
ConvDataType
::
BF16_BF16_BF16
)
{
return
profile
(
I2
,
NHWGK
{},
GKYXC
{},
NHWGC
{},
BF16
{},
BF16
{},
BF16
{});
}
}
std
::
cout
<<
"this data_type & layout is not implemented"
<<
std
::
endl
;
return
1
;
}
REGISTER_PROFILER_OPERATION
(
OP_NAME
,
OP_DESC
,
profile_grouped_conv_bwd_data
);
test/CMakeLists.txt
View file @
a4c89647
...
...
@@ -59,6 +59,7 @@ add_subdirectory(batchnorm)
add_subdirectory
(
contraction
)
add_subdirectory
(
pool_fwd
)
add_subdirectory
(
batched_gemm_multi_d
)
add_subdirectory
(
grouped_convnd_bwd_data
)
if
(
GPU_TARGETS MATCHES
"gfx1100"
)
add_subdirectory
(
wmma_op
)
endif
()
test/grouped_convnd_bwd_data/CMakeLists.txt
0 → 100644
View file @
a4c89647
if
(
GPU_TARGETS MATCHES
"gfx908"
OR GPU_TARGETS MATCHES
"gfx90a"
OR GPU_TARGETS MATCHES
"gfx940"
)
add_gtest_executable
(
test_grouped_convnd_bwd_data grouped_convnd_bwd_data.cpp
)
target_link_libraries
(
test_grouped_convnd_bwd_data PRIVATE utility device_grouped_conv2d_bwd_data_instance
)
endif
()
\ No newline at end of file
test/grouped_convnd_bwd_data/grouped_convnd_bwd_data.cpp
0 → 100644
View file @
a4c89647
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
template
<
typename
Tuple
>
class
TestGroupedConvndBwdData
:
public
::
testing
::
Test
{
protected:
using
DataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
WeiLayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
InLayout
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
std
::
vector
<
ck
::
utils
::
conv
::
ConvParam
>
conv_params
;
template
<
ck
::
index_t
NDimSpatial
>
void
Run
()
{
for
(
auto
&
param
:
conv_params
)
{
bool
pass
;
EXPECT_FALSE
(
conv_params
.
empty
());
pass
=
ck
::
profiler
::
profile_grouped_conv_bwd_data_impl
<
NDimSpatial
,
OutLayout
,
WeiLayout
,
InLayout
,
DataType
,
DataType
,
DataType
>
(
true
,
// do_verification
1
,
// init_method: integer value
false
,
// do_log
false
,
// time_kernel
param
);
EXPECT_TRUE
(
pass
);
}
}
};
using
GNHWC
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
NHWGC
=
ck
::
tensor_layout
::
convolution
::
NHWGC
;
using
GKYXC
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
GNHWK
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
NHWGK
=
ck
::
tensor_layout
::
convolution
::
NHWGK
;
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
float
,
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
ck
::
half_t
,
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
GNHWK
,
GKYXC
,
GNHWC
>
,
std
::
tuple
<
float
,
NHWGK
,
GKYXC
,
NHWGC
>
,
std
::
tuple
<
ck
::
half_t
,
NHWGK
,
GKYXC
,
NHWGC
>
,
std
::
tuple
<
ck
::
bhalf_t
,
NHWGK
,
GKYXC
,
NHWGC
>>
;
TYPED_TEST_SUITE
(
TestGroupedConvndBwdData
,
KernelTypes
);
TYPED_TEST
(
TestGroupedConvndBwdData
,
Test2D
)
{
this
->
conv_params
.
clear
();
this
->
conv_params
.
push_back
(
{
2
,
2
,
4
,
192
,
192
,
{
3
,
3
},
{
28
,
28
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
3
,
3
},
{
14
,
14
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
7
,
7
},
{
2
,
2
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
conv_params
.
push_back
(
{
2
,
2
,
128
,
128
,
256
,
{
1
,
1
},
{
3
,
3
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}});
this
->
template
Run
<
2
>();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment