"docs/vscode:/vscode.git/clone" did not exist on "f7a4626f4b016e282e1f913a06616c1604b75144"
Commit a465273a authored by rocking's avatar rocking
Browse files

test pool

parent 5c92615d
......@@ -57,6 +57,7 @@ add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm)
add_subdirectory(contraction)
add_subdirectory(pool_fwd)
if(GPU_TARGETS MATCHES "gfx1100")
add_subdirectory(wmma_op)
endif()
add_custom_target(test_pool_fwd)
add_gtest_executable(test_avg_pool2d_fwd test_avg_pool2d_fwd.cpp)
add_gtest_executable(test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp)
add_gtest_executable(test_max_pool2d_fwd test_max_pool2d_fwd.cpp)
add_gtest_executable(test_max_pool3d_fwd test_max_pool3d_fwd.cpp)
target_link_libraries(test_avg_pool2d_fwd PRIVATE utility device_pool_fwd_instance)
target_link_libraries(test_avg_pool3d_fwd PRIVATE utility device_pool_fwd_instance)
target_link_libraries(test_max_pool2d_fwd PRIVATE utility device_pool_fwd_instance)
target_link_libraries(test_max_pool3d_fwd PRIVATE utility device_pool_fwd_instance)
add_dependencies(test_pool_fwd test_avg_pool2d_fwd)
add_dependencies(test_pool_fwd test_avg_pool3d_fwd)
add_dependencies(test_pool_fwd test_max_pool2d_fwd)
add_dependencies(test_pool_fwd test_max_pool3d_fwd)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestAvgPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::AVG,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using KernelTypes =
::testing::Types<std::tuple<F16, F16, F32, I32>, std::tuple<F32, F32, F32, I32>>;
TYPED_TEST_SUITE(TestAvgPool2dFwd, KernelTypes);
TYPED_TEST(TestAvgPool2dFwd, Test_Pool)
{
// length, window_length, window_stride, left_pad, right_pad
this->params = {{{1, 1, 1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}}};
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool3d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestAvgPool3dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
bool success =
ck::profiler::profile_pool3d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::AVG,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using KernelTypes =
::testing::Types<std::tuple<F16, F16, F32, I32>, std::tuple<F32, F32, F32, I32>>;
TYPED_TEST_SUITE(TestAvgPool3dFwd, KernelTypes);
TYPED_TEST(TestAvgPool3dFwd, Test_Pool)
{
// length, window_length, window_stride, left_pad, right_pad
this->params = {{{1, 1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}},
{{2, 16, 64, 64, 64}, {64, 64, 64}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}},
{{2, 32, 30, 30, 30}, {2, 2, 2}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}}};
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestMaxPool2dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// max pool
bool success =
ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::MAX,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
// max pool + index
success = ck::profiler::profile_pool2d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::MAX,
false,
true>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using KernelTypes =
::testing::Types<std::tuple<F16, F16, F16, I32>, std::tuple<F32, F32, F32, I32>>;
TYPED_TEST_SUITE(TestMaxPool2dFwd, KernelTypes);
TYPED_TEST(TestMaxPool2dFwd, Test_Pool)
{
// length, window_length, window_stride, left_pad, right_pad
this->params = {{{1, 1, 1, 1}, {1, 1}, {1, 1}, {0, 0}, {0, 0}},
{{2, 16, 64, 64}, {64, 64}, {1, 1}, {0, 0}, {0, 0}},
{{2, 32, 30, 30}, {2, 2}, {2, 2}, {1, 1}, {1, 1}}};
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool3d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template <typename Tuple>
class TestMaxPool3dFwd : public ::testing::Test
{
protected:
using InDataType = std::tuple_element_t<0, Tuple>;
using OutDataType = std::tuple_element_t<1, Tuple>;
using ComputeDataType = std::tuple_element_t<2, Tuple>;
using IndexDataType = std::tuple_element_t<3, Tuple>;
std::vector<PoolingParam> params;
void Run()
{
for(auto param : params)
{
// max pool
bool success =
ck::profiler::profile_pool3d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::MAX,
false,
false>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
// max pool + index
success = ck::profiler::profile_pool3d_fwd_impl<InDataType,
OutDataType,
ComputeDataType,
IndexDataType,
ck::ReduceTensorOp::MAX,
false,
true>(true,
2,
false,
false,
param.length_,
param.window_spatial_lengths_,
param.window_strides_,
param.input_left_pads_,
param.input_right_pads_);
EXPECT_TRUE(success);
}
}
};
using KernelTypes =
::testing::Types<std::tuple<F16, F16, F16, I32>, std::tuple<F32, F32, F32, I32>>;
TYPED_TEST_SUITE(TestMaxPool3dFwd, KernelTypes);
TYPED_TEST(TestMaxPool3dFwd, Test_Pool)
{
// length, window_length, window_stride, left_pad, right_pad
this->params = {{{1, 1, 1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}},
{{2, 16, 64, 64, 64}, {64, 64, 64}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}},
{{2, 32, 30, 30, 30}, {2, 2, 2}, {2, 2, 2}, {1, 1, 1}, {1, 1, 1}}};
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
using F16 = ck::half_t;
using F32 = float;
using I32 = int32_t;
using ck::index_t;
struct PoolingParam
{
PoolingParam(const std::vector<index_t>& length,
const std::vector<index_t>& window_spatial_lengths,
const std::vector<index_t>& window_strides,
const std::vector<index_t>& input_left_pads,
const std::vector<index_t>& input_right_pads)
: length_(length),
window_spatial_lengths_(window_spatial_lengths),
window_strides_(window_strides),
input_left_pads_(input_left_pads),
input_right_pads_(input_right_pads)
{
}
std::vector<index_t> length_;
std::vector<index_t> window_spatial_lengths_;
std::vector<index_t> window_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment