Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
9b0ee1f1
Commit
9b0ee1f1
authored
Jun 25, 2023
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into stream-k-initial-impl
parents
c3c89727
3b18f1e3
Changes
52
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1058 additions
and
26 deletions
+1058
-26
CHANGELOG.md
CHANGELOG.md
+2
-0
Jenkinsfile
Jenkinsfile
+1
-1
example/31_batched_gemm_gemm/CMakeLists.txt
example/31_batched_gemm_gemm/CMakeLists.txt
+2
-6
example/41_grouped_conv_conv_fwd/CMakeLists.txt
example/41_grouped_conv_conv_fwd/CMakeLists.txt
+2
-6
example/49_maxpool2d_bwd/CMakeLists.txt
example/49_maxpool2d_bwd/CMakeLists.txt
+3
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_bf16.cpp
example/49_maxpool2d_bwd/maxpool2d_bwd_bf16.cpp
+62
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
+222
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_fp16.cpp
example/49_maxpool2d_bwd/maxpool2d_bwd_fp16.cpp
+62
-0
example/49_maxpool2d_bwd/maxpool2d_bwd_fp32.cpp
example/49_maxpool2d_bwd/maxpool2d_bwd_fp32.cpp
+62
-0
example/50_put_element/CMakeLists.txt
example/50_put_element/CMakeLists.txt
+1
-0
example/50_put_element/put_element_fp16.cpp
example/50_put_element/put_element_fp16.cpp
+88
-0
include/ck/ck.hpp
include/ck/ck.hpp
+4
-0
include/ck/host_utility/stream_utility.hpp
include/ck/host_utility/stream_utility.hpp
+1
-1
include/ck/tensor_operation/gpu/device/device_index_pool_bwd.hpp
.../ck/tensor_operation/gpu/device/device_index_pool_bwd.hpp
+32
-0
include/ck/tensor_operation/gpu/device/device_put_element.hpp
...ude/ck/tensor_operation/gpu/device/device_put_element.hpp
+36
-0
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+0
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
...tion/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
+1
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
...vice_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
+6
-9
include/ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp
..._operation/gpu/device/impl/device_index_pool_bwd_impl.hpp
+316
-0
include/ck/tensor_operation/gpu/device/impl/device_put_element_impl.hpp
...sor_operation/gpu/device/impl/device_put_element_impl.hpp
+155
-0
No files found.
CHANGELOG.md
View file @
9b0ee1f1
...
@@ -20,6 +20,8 @@ Full documentation for Composable Kernel is not yet available.
...
@@ -20,6 +20,8 @@ Full documentation for Composable Kernel is not yet available.
-
Added multi-embeddings support (#542).
-
Added multi-embeddings support (#542).
-
Added Navi3x blockwise GEMM and real GEMM support (#541).
-
Added Navi3x blockwise GEMM and real GEMM support (#541).
-
Added Navi grouped ConvBwdWeight support (#505).
-
Added Navi grouped ConvBwdWeight support (#505).
-
Added pool3d forward (#697).
-
Added maxpool backward (#750).
### Changed
### Changed
-
Changed ...
-
Changed ...
Jenkinsfile
View file @
9b0ee1f1
...
@@ -696,7 +696,7 @@ pipeline {
...
@@ -696,7 +696,7 @@ pipeline {
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940
;gfx941;gfx942
" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
}
steps
{
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
...
...
example/31_batched_gemm_gemm/CMakeLists.txt
View file @
9b0ee1f1
...
@@ -14,10 +14,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -14,10 +14,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
endif
()
endif
()
endforeach
()
endforeach
()
set
(
target 0
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
add_example_executable
(
example_batched_gemm_gemm_xdl_int8 batched_gemm_gemm_xdl_int8.cpp
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
\ No newline at end of file
example/41_grouped_conv_conv_fwd/CMakeLists.txt
View file @
9b0ee1f1
...
@@ -13,10 +13,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -13,10 +13,6 @@ foreach(gpu IN LISTS GPU_TARGETS)
endif
()
endif
()
endforeach
()
endforeach
()
set
(
target 0
)
if
(
NOT GPU_TARGETS MATCHES
"gfx94"
AND NOT GPU_TARGETS MATCHES
"gfx1"
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
add_example_executable
(
example_grouped_conv_conv_fwd_xdl_int8 grouped_conv_conv_fwd_xdl_int8.cpp
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
example/49_maxpool2d_bwd/CMakeLists.txt
0 → 100644
View file @
9b0ee1f1
add_example_executable
(
example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp
)
example/49_maxpool2d_bwd/maxpool2d_bwd_bf16.cpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
using
IndexDataType
=
int32_t
;
using
ComputeDataType
=
float
;
using
DInDataType
=
ck
::
bhalf_t
;
using
DOutDataType
=
ck
::
bhalf_t
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
1
;
ck
::
index_t
C
=
1
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
32
;
ck
::
index_t
Wi
=
32
;
ck
::
index_t
window_stride_h
=
1
;
ck
::
index_t
window_stride_w
=
1
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
bool
pass
=
maxpool_bwd_test
<
InDataType
,
OutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
DOutDataType
,
PropagateNan
>
(
do_verification
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/49_maxpool2d_bwd/maxpool2d_bwd_common.hpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp"
template
<
typename
InDataType
,
typename
OutDataType
,
typename
IndexDataType
,
typename
ComputeDataType
,
typename
DInDataType
,
typename
DOutDataType
,
bool
PropagateNan
>
bool
maxpool_bwd_test
(
bool
do_verification
,
bool
time_kernel
,
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
Y
,
ck
::
index_t
X
,
ck
::
index_t
Hi
,
ck
::
index_t
Wi
,
ck
::
index_t
window_stride_h
,
ck
::
index_t
window_stride_w
,
ck
::
index_t
in_left_pad_h
,
ck
::
index_t
in_left_pad_w
,
ck
::
index_t
in_right_pad_h
,
ck
::
index_t
in_right_pad_w
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
IndexDataType
,
// IndexDataType
ComputeDataType
,
// ComputeDataType
ck
::
ReduceTensorOp
::
MAX
,
true
,
// OutputIndex
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
1
>
;
// InSrcOutDstVectorSize
using
DeviceMaxPoolBwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceIndexPoolBwdImpl
<
DOutDataType
,
IndexDataType
,
DInDataType
,
4
>
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
window_spatial_lengths
{
Y
,
X
};
const
std
::
vector
<
ck
::
index_t
>
window_strides
{
window_stride_h
,
window_stride_w
};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_h
,
in_left_pad_w
};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_h
,
in_right_pad_w
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
)
{
using
namespace
ck
::
literals
;
// reference need Tensor with NCHW order
return
HostTensorDescriptor
({
N_
,
C_
,
H
,
W
},
{
C_
*
H
*
W
,
1
_uz
,
W
*
C_
,
C_
});
};
// in
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
// out
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
// indices
Tensor
<
IndexDataType
>
indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
Tensor
<
IndexDataType
>
indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
// dout
Tensor
<
DOutDataType
>
dout_n_c_ho_wo
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
));
// din
Tensor
<
DInDataType
>
din_n_c_hi_wi_host
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
DInDataType
>
din_n_c_hi_wi_device
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_ho_wo: "
<<
out_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"indices_n_c_ho_wo: "
<<
indices_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"dout_n_c_ho_wo: "
<<
dout_n_c_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"din_n_c_hi_wi: "
<<
din_n_c_hi_wi_host
.
mDesc
<<
std
::
endl
;
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
dout_n_c_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_3
<
DOutDataType
>
{
-
1.0
,
1.0
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
indices_device_buf
(
sizeof
(
IndexDataType
)
*
indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dout_device_buf
(
sizeof
(
DOutDataType
)
*
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
din_device_buf
(
sizeof
(
DInDataType
)
*
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
dout_device_buf
.
ToDevice
(
dout_n_c_ho_wo
.
mData
.
data
());
auto
pool_fwd
=
DevicePoolFwdInstance
{};
auto
pool_fwd_invoker_ptr
=
pool_fwd
.
MakeInvokerPointer
();
auto
pool_fwd_argument_ptr
=
pool_fwd
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
{
N
,
C
,
Hi
,
Wi
},
window_spatial_lengths
,
{
N
,
C
,
Ho
,
Wo
},
{
C
*
Hi
*
Wi
,
1
,
Wi
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
{
C
*
Ho
*
Wo
,
1
,
Wo
*
C
,
C
},
window_strides
,
input_left_pads
,
input_right_pads
,
{
2
,
3
});
if
(
!
pool_fwd
.
IsSupportedArgument
(
pool_fwd_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! pool_fwd with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time_fwd
=
pool_fwd_invoker_ptr
->
Run
(
pool_fwd_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
auto
pool_bwd
=
DeviceMaxPoolBwdInstance
{};
auto
pool_bwd_invoker_ptr
=
pool_bwd
.
MakeInvokerPointer
();
auto
pool_bwd_argument_ptr
=
pool_bwd
.
MakeArgumentPointer
(
static_cast
<
DOutDataType
*>
(
dout_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DInDataType
*>
(
din_device_buf
.
GetDeviceBuffer
()),
dout_n_c_ho_wo
.
mDesc
.
GetElementSpaceSize
(),
din_n_c_hi_wi_device
.
mDesc
.
GetElementSpaceSize
(),
window_spatial_lengths
,
window_strides
);
if
(
!
pool_bwd
.
IsSupportedArgument
(
pool_bwd_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! pool_bwd with the specified compilation parameters does "
"not support this problem"
);
}
size_t
pool_bwd_workspace_sz
=
pool_bwd
.
GetWorkSpaceSize
(
pool_bwd_argument_ptr
.
get
());
DeviceMem
pool_bwd_workspace_device_buf
(
pool_bwd_workspace_sz
);
pool_bwd
.
SetWorkSpacePointer
(
pool_bwd_argument_ptr
.
get
(),
pool_bwd_workspace_device_buf
.
GetDeviceBuffer
());
float
ave_time_bwd
=
pool_bwd_invoker_ptr
->
Run
(
pool_bwd_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"Pool fwd perf: "
<<
ave_time_fwd
<<
" ms"
<<
std
::
endl
;
std
::
cout
<<
"Pool bwd perf: "
<<
ave_time_bwd
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferencePoolingFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferencePoolingFwd
<
4
,
2
,
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
MAX
,
PropagateNan
,
true
>
;
auto
ref_pooling_fwd
=
ReferencePoolingFwdInstance
{};
auto
ref_pooling_fwd_invoker
=
ref_pooling_fwd
.
MakeInvoker
();
auto
ref_pooling_fwd_argument
=
ref_pooling_fwd
.
MakeArgument
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
ref_pooling_fwd_invoker
.
Run
(
ref_pooling_fwd_argument
);
using
ReferencePoolingBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceMaxPoolBwd
<
DOutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
PassThrough
>
;
auto
ref_pooling_bwd
=
ReferencePoolingBwdInstance
{};
auto
ref_pooling_bwd_invoker
=
ref_pooling_bwd
.
MakeInvoker
();
auto
ref_pooling_bwd_argument
=
ref_pooling_bwd
.
MakeArgument
(
dout_n_c_ho_wo
,
indices_n_c_ho_wo_host
,
din_n_c_hi_wi_host
,
PassThrough
{});
ref_pooling_bwd_invoker
.
Run
(
ref_pooling_bwd_argument
);
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
indices_device_buf
.
FromDevice
(
indices_n_c_ho_wo_device
.
mData
.
data
());
din_device_buf
.
FromDevice
(
din_n_c_hi_wi_device
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_n_c_ho_wo_device
,
out_n_c_ho_wo_host
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
indices_n_c_ho_wo_device
,
indices_n_c_ho_wo_host
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
din_n_c_hi_wi_device
,
din_n_c_hi_wi_host
);
}
return
(
pass
);
};
example/49_maxpool2d_bwd/maxpool2d_bwd_fp16.cpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
using
ComputeDataType
=
float
;
using
DInDataType
=
ck
::
half_t
;
using
DOutDataType
=
ck
::
half_t
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
1
;
ck
::
index_t
C
=
1
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
32
;
ck
::
index_t
Wi
=
32
;
ck
::
index_t
window_stride_h
=
1
;
ck
::
index_t
window_stride_w
=
1
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
bool
pass
=
maxpool_bwd_test
<
InDataType
,
OutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
DOutDataType
,
PropagateNan
>
(
do_verification
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/49_maxpool2d_bwd/maxpool2d_bwd_fp32.cpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "maxpool2d_bwd_common.hpp"
using
InDataType
=
float
;
using
OutDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
ComputeDataType
=
float
;
using
DInDataType
=
float
;
using
DOutDataType
=
float
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
1
;
ck
::
index_t
C
=
1
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Hi
=
32
;
ck
::
index_t
Wi
=
32
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
bool
pass
=
maxpool_bwd_test
<
InDataType
,
OutDataType
,
IndexDataType
,
ComputeDataType
,
DInDataType
,
DOutDataType
,
PropagateNan
>
(
do_verification
,
time_kernel
,
N
,
C
,
Y
,
X
,
Hi
,
Wi
,
window_stride_h
,
window_stride_w
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
example/50_put_element/CMakeLists.txt
0 → 100644
View file @
9b0ee1f1
add_example_executable
(
example_put_element_fp16 put_element_fp16.cpp
)
example/50_put_element/put_element_fp16.cpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_put_element_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
XDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
IndexDataType
=
int32_t
;
using
YElementwiseOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DevicePutElementImpl
<
XDataType
,
// XDataType
IndexDataType
,
// IndexDataType
YDataType
,
// YDataType
YElementwiseOp
,
ck
::
InMemoryDataOperationEnum
::
Set
,
1
>
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
int
N
=
1024
;
Tensor
<
XDataType
>
x
(
HostTensorDescriptor
{
N
,
1
});
Tensor
<
IndexDataType
>
indices
(
HostTensorDescriptor
{
N
,
1
});
Tensor
<
YDataType
>
y
(
HostTensorDescriptor
{
N
,
1
});
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
-
1.0
,
1.0
});
for
(
int
i
=
0
;
i
<
N
;
++
i
)
indices
(
i
)
=
i
;
DeviceMem
x_device_buf
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_device_buf
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
indices_device_buf
(
sizeof
(
IndexDataType
)
*
indices
.
mDesc
.
GetElementSpaceSize
());
x_device_buf
.
ToDevice
(
x
.
mData
.
data
());
indices_device_buf
.
ToDevice
(
indices
.
mData
.
data
());
auto
put_instance
=
DeviceInstance
{};
auto
put_invoker_ptr
=
put_instance
.
MakeInvokerPointer
();
auto
put_argument_ptr
=
put_instance
.
MakeArgumentPointer
(
static_cast
<
XDataType
*>
(
x_device_buf
.
GetDeviceBuffer
()),
static_cast
<
IndexDataType
*>
(
indices_device_buf
.
GetDeviceBuffer
()),
static_cast
<
YDataType
*>
(
y_device_buf
.
GetDeviceBuffer
()),
N
,
N
,
YElementwiseOp
{});
if
(
!
put_instance
.
IsSupportedArgument
(
put_argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"argument is not supported!"
);
}
float
ave_time
=
put_invoker_ptr
->
Run
(
put_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
cout
<<
"perf: "
<<
ave_time
<<
" ms"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
YDataType
>
y_host
(
HostTensorDescriptor
{
N
,
1
});
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
IndexDataType
idx
=
indices
(
i
);
y_host
(
idx
)
=
x
(
i
);
}
y_device_buf
.
FromDevice
(
y
.
mData
.
data
());
pass
=
ck
::
utils
::
check_err
(
y
,
y_host
);
}
return
(
pass
?
0
:
1
);
}
include/ck/ck.hpp
View file @
9b0ee1f1
...
@@ -173,6 +173,10 @@
...
@@ -173,6 +173,10 @@
// workaround: compiler issue on gfx908
// workaround: compiler issue on gfx908
#define CK_WORKAROUND_SWDEV_388832 1
#define CK_WORKAROUND_SWDEV_388832 1
// workaround: Grouped Conv2d_bwd_data fails for already implemented instance
#define CK_WORKAROUND_SWDEV_3318619 0
// flag to enable (1) or disable (0) the debugging output in some kernels
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
#define DEBUG_LOG 0
...
...
include/ck/host_utility/stream_utility.hpp
View file @
9b0ee1f1
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
#include "ck/stream_config.hpp"
#include "ck/stream_config.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/host_utility/hip_check_error.hpp"
static
int
getAvailableComputeUnitCount
(
const
StreamConfig
&
stream_config
)
static
inline
int
getAvailableComputeUnitCount
(
const
StreamConfig
&
stream_config
)
{
{
constexpr
int
MAX_MASK_DWORDS
=
64
;
constexpr
int
MAX_MASK_DWORDS
=
64
;
...
...
include/ck/tensor_operation/gpu/device/device_index_pool_bwd.hpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// For pooling which used indexable operation, such as MaxPool, MinPool...etc
template
<
typename
DOutDataType
,
typename
IndexDataType
,
typename
DInDataType
>
struct
DeviceIndexPoolBwd
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_dout
,
const
void
*
p_indices
,
void
*
p_din
,
index_t
dout_length
,
index_t
din_length
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_put_element.hpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/utility/reduction_enums.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// output[indices] = input
template
<
typename
InDataType
,
typename
IndexDataType
,
typename
OutDataType
,
typename
ElementwiseOperation
,
InMemoryDataOperationEnum
Op
>
struct
DevicePutElement
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_input
,
const
void
*
p_indices
,
void
*
p_output
,
index_t
input_length
,
index_t
output_length
,
ElementwiseOperation
elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
View file @
9b0ee1f1
...
@@ -786,12 +786,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
...
@@ -786,12 +786,10 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
==
1
&&
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
==
1
&&
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
0
]
%
D0sTransferSrcScalarPerVector
!=
0
)
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
0
]
%
D0sTransferSrcScalarPerVector
!=
0
)
{
{
std
::
cout
<<
"first"
<<
std
::
endl
;
return
false
;
return
false
;
}
}
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
!=
1
&&
D0sTransferSrcScalarPerVector
!=
1
)
if
(
arg
.
d0s_nl_ns_lengths_strides_
[
i
][
1
]
!=
1
&&
D0sTransferSrcScalarPerVector
!=
1
)
{
{
std
::
cout
<<
"second"
<<
std
::
endl
;
return
false
;
return
false
;
}
}
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
9b0ee1f1
...
@@ -76,7 +76,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
...
@@ -76,7 +76,7 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
// TODO: should be exposed as Tparams.
// TODO: should be exposed as Tparams.
static
constexpr
index_t
NumGemmKPrefetchStage
=
1
;
static
constexpr
index_t
NumGemmKPrefetchStage
=
1
;
static
constexpr
LoopScheduler
LoopSched
=
make_default_loop_scheduler
();
static
constexpr
LoopScheduler
LoopSched
=
make_default_loop_scheduler
();
static
constexpr
PipelineVersion
PipelineVer
=
PipelineVersion
::
v
2
;
static
constexpr
PipelineVersion
PipelineVer
=
PipelineVersion
::
v
1
;
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
using
GridwiseGemm
=
GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<
BlockSize
,
BlockSize
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp
View file @
9b0ee1f1
...
@@ -459,7 +459,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -459,7 +459,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
p_ds_grid_
{},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_k_wos_lengths
[
0
]},
num_group_
{
a_g_n_k_wos_lengths
[
0
]},
num_gemm_
{},
a_element_op_
{
a_element_op
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
cde_element_op_
{
cde_element_op
},
...
@@ -508,9 +507,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -508,9 +507,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
// number of GEMM
num_gemm_
=
YTilde
*
XTilde
;
for
(
index_t
i_ytilde
=
0
;
i_ytilde
<
YTilde
;
++
i_ytilde
)
for
(
index_t
i_ytilde
=
0
;
i_ytilde
<
YTilde
;
++
i_ytilde
)
{
{
for
(
index_t
i_xtilde
=
0
;
i_xtilde
<
XTilde
;
++
i_xtilde
)
for
(
index_t
i_xtilde
=
0
;
i_xtilde
<
XTilde
;
++
i_xtilde
)
...
@@ -626,7 +622,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -626,7 +622,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
void
Print
()
const
void
Print
()
const
{
{
for
(
index
_t
i
=
0
;
i
<
num_gemm_
;
i
++
)
for
(
std
::
size
_t
i
=
0
;
i
<
a_grid_desc_ak0_m_ak1_container_
.
size
()
;
i
++
)
{
{
std
::
cout
<<
"a_grid_desc_ak0_m_ak1_container_"
std
::
cout
<<
"a_grid_desc_ak0_m_ak1_container_"
<<
a_grid_desc_ak0_m_ak1_container_
[
i
]
<<
std
::
endl
;
<<
a_grid_desc_ak0_m_ak1_container_
[
i
]
<<
std
::
endl
;
...
@@ -654,7 +650,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -654,7 +650,6 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
// tensor descriptor for problem definition
// tensor descriptor for problem definition
index_t
num_group_
;
index_t
num_group_
;
index_t
num_gemm_
;
std
::
vector
<
AGridDesc_M_K
>
a_grid_desc_m_k_container_
;
std
::
vector
<
AGridDesc_M_K
>
a_grid_desc_m_k_container_
;
std
::
vector
<
BGridDesc_N_K
>
b_grid_desc_n_k_container_
;
std
::
vector
<
BGridDesc_N_K
>
b_grid_desc_n_k_container_
;
std
::
vector
<
DsGridDesc_M_N
>
ds_grid_desc_m_n_container_
;
std
::
vector
<
DsGridDesc_M_N
>
ds_grid_desc_m_n_container_
;
...
@@ -708,7 +703,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -708,7 +703,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
float
ave_time
=
0
;
float
ave_time
=
0
;
for
(
index
_t
i
=
0
;
i
<
arg
.
num_gemm_
;
i
++
)
for
(
std
::
size
_t
i
=
0
;
i
<
arg
.
a_grid_desc_ak0_m_ak1_container_
.
size
()
;
i
++
)
{
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_container_
[
i
],
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_container_
[
i
],
arg
.
b_grid_desc_n_k_container_
[
i
],
arg
.
b_grid_desc_n_k_container_
[
i
],
...
@@ -807,7 +802,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -807,7 +802,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
}
// vector load for A matrix from global memory to LDS
// vector load for A matrix from global memory to LDS
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
)
if
constexpr
(
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ALayout
,
tensor_layout
::
convolution
::
NHWGK
>
)
{
{
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
ConvK
%
ABlockTransferSrcScalarPerVector
==
0
))
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
ConvK
%
ABlockTransferSrcScalarPerVector
==
0
))
{
{
...
@@ -862,7 +858,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
...
@@ -862,7 +858,8 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
}
}
// vector store for E
// vector store for E
if
constexpr
(
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
GNHWC
>
)
if
constexpr
(
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
GNHWC
>
||
is_same_v
<
ELayout
,
tensor_layout
::
convolution
::
NHWGC
>
)
{
{
// vector store C matrix into global memory
// vector store C matrix into global memory
if
(
!
(
ConvC
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
if
(
!
(
ConvC
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
...
...
include/ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_index_pool_bwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_1d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// output[indices] = input
template
<
typename
DOutDataType
,
typename
IndexDataType
,
typename
DInDataType
,
ck
::
index_t
InOutVectorSize
>
struct
DeviceIndexPoolBwdImpl
:
public
DeviceIndexPoolBwd
<
DOutDataType
,
IndexDataType
,
DInDataType
>
{
using
DInDataType_AutomicAddPreCast
=
conditional_t
<
is_same_v
<
DInDataType
,
float
>
||
is_same_v
<
DInDataType
,
double
>
,
DInDataType
,
float
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryConvert
=
ck
::
tensor_operation
::
element_wise
::
UnaryConvert
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
template
<
typename
Desc_M
>
static
auto
PadDescriptor_M_1d
(
Desc_M
desc_m
,
index_t
loop_step
)
{
const
auto
m
=
desc_m
.
GetLength
(
I0
);
const
auto
pad
=
math
::
integer_least_multiple
(
m
,
loop_step
)
-
m
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
make_right_pad_transform
(
m
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m_pad
;
}
static
auto
MakeDescriptor_M
(
index_t
length
,
index_t
loop_step
)
{
const
auto
desc_m
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
length
));
return
PadDescriptor_M_1d
(
desc_m
,
loop_step
);
}
using
InOutGrid1dDesc
=
decltype
(
MakeDescriptor_M
(
1
,
1
));
using
GridwisePutElementSet
=
GridwisePutElement_1D
<
InOutGrid1dDesc
,
DOutDataType
,
IndexDataType
,
DInDataType
,
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
InOutVectorSize
>
;
using
GridwisePutElementAtomicAdd
=
GridwisePutElement_1D
<
InOutGrid1dDesc
,
DOutDataType
,
IndexDataType
,
DInDataType_AutomicAddPreCast
,
PassThrough
,
InMemoryDataOperationEnum
::
AtomicAdd
,
InOutVectorSize
>
;
using
GridwiseCasting
=
GridwiseElementwise_1D
<
Tuple
<
InOutGrid1dDesc
>
,
Tuple
<
InOutGrid1dDesc
>
,
Tuple
<
const
DInDataType_AutomicAddPreCast
*>
,
Tuple
<
DInDataType
*>
,
UnaryConvert
,
InOutVectorSize
,
Sequence
<
InOutVectorSize
>
,
Sequence
<
InOutVectorSize
>>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
DOutDataType
*
p_dout
,
const
IndexDataType
*
p_indices
,
DInDataType
*
p_din
,
index_t
dout_length
,
index_t
din_length
,
const
std
::
vector
<
ck
::
index_t
>&
window_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
window_strides
)
:
p_dout_
{
p_dout
},
p_indices_
{
p_indices
},
p_din_
{
p_din
},
dout_length_raw_
{
dout_length
},
din_length_raw_
{
din_length
},
blockSize_
{
256
},
windowOverlap_
{
false
}
{
for
(
size_t
i
=
0
;
i
<
window_lengths
.
size
();
++
i
)
{
windowOverlap_
|=
window_lengths
.
at
(
i
)
>
window_strides
.
at
(
i
);
}
}
const
DOutDataType
*
p_dout_
;
const
IndexDataType
*
p_indices_
;
DInDataType
*
p_din_
;
index_t
dout_length_raw_
;
index_t
din_length_raw_
;
index_t
blockSize_
;
bool
windowOverlap_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
index_t
gridSize
=
getAvailableComputeUnitCount
(
stream_config
);
index_t
loop_step
=
gridSize
*
arg
.
blockSize_
*
InOutVectorSize
;
InOutGrid1dDesc
din_grid_desc
=
MakeDescriptor_M
(
arg
.
din_length_raw_
,
loop_step
);
InOutGrid1dDesc
dout_grid_desc
=
MakeDescriptor_M
(
arg
.
dout_length_raw_
,
loop_step
);
if
constexpr
(
is_same_v
<
DInDataType
,
float
>
||
is_same_v
<
DInDataType
,
double
>
)
{
hip_check_error
(
hipMemsetAsync
(
arg
.
p_din_
,
0
,
arg
.
din_length_raw_
*
sizeof
(
DInDataType
),
stream_config
.
stream_id_
));
if
(
arg
.
windowOverlap_
)
{
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementAtomicAdd
,
InOutGrid1dDesc
,
DOutDataType
,
IndexDataType
,
DInDataType
,
PassThrough
>
;
return
launch_and_time_kernel
(
stream_config
,
put_kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
dout_grid_desc
,
arg
.
p_dout_
,
arg
.
p_indices_
,
arg
.
p_din_
,
PassThrough
{});
}
else
{
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementSet
,
InOutGrid1dDesc
,
DOutDataType
,
IndexDataType
,
DInDataType
,
PassThrough
>
;
return
launch_and_time_kernel
(
stream_config
,
put_kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
dout_grid_desc
,
arg
.
p_dout_
,
arg
.
p_indices_
,
arg
.
p_din_
,
PassThrough
{});
}
}
else
{
if
(
arg
.
windowOverlap_
)
{
if
(
arg
.
p_workspace_
==
nullptr
)
throw
std
::
runtime_error
(
"wrong! WorkSpace pointer has not been set"
);
hip_check_error
(
hipMemsetAsync
(
arg
.
p_workspace_
,
0
,
arg
.
din_length_raw_
*
sizeof
(
DInDataType_AutomicAddPreCast
),
stream_config
.
stream_id_
));
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementAtomicAdd
,
InOutGrid1dDesc
,
DOutDataType
,
IndexDataType
,
DInDataType_AutomicAddPreCast
,
PassThrough
>
;
const
auto
cast_kernel
=
kernel_elementwise_1d
<
GridwiseCasting
,
Tuple
<
InOutGrid1dDesc
>
,
Tuple
<
InOutGrid1dDesc
>
,
Tuple
<
const
DInDataType_AutomicAddPreCast
*>
,
Tuple
<
DInDataType
*>
,
UnaryConvert
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
put_kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
dout_grid_desc
,
arg
.
p_dout_
,
arg
.
p_indices_
,
static_cast
<
DInDataType_AutomicAddPreCast
*>
(
arg
.
p_workspace_
),
PassThrough
{});
elapsed_time
+=
launch_and_time_kernel
(
stream_config
,
cast_kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
ck
::
make_tuple
(
din_grid_desc
),
ck
::
make_tuple
(
din_grid_desc
),
static_cast
<
DInDataType_AutomicAddPreCast
*>
(
arg
.
p_workspace_
),
arg
.
p_din_
,
UnaryConvert
{});
return
elapsed_time
;
}
else
{
const
auto
put_kernel
=
kernel_put_element_1d
<
GridwisePutElementSet
,
InOutGrid1dDesc
,
DOutDataType
,
IndexDataType
,
DInDataType
,
PassThrough
>
;
hip_check_error
(
hipMemsetAsync
(
arg
.
p_din_
,
0
,
arg
.
din_length_raw_
*
sizeof
(
DInDataType
),
stream_config
.
stream_id_
));
return
launch_and_time_kernel
(
stream_config
,
put_kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
dout_grid_desc
,
arg
.
p_dout_
,
arg
.
p_indices_
,
arg
.
p_din_
,
PassThrough
{});
}
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
pArg
)
const
override
{
const
Argument
*
pArg_
=
dynamic_cast
<
const
Argument
*>
(
pArg
);
bool
needCast
=
pArg_
->
windowOverlap_
&&
!
(
is_same_v
<
DInDataType
,
float
>
||
is_same_v
<
DInDataType
,
double
>
);
if
(
!
needCast
)
return
0
;
else
return
pArg_
->
din_length_raw_
*
sizeof
(
DInDataType_AutomicAddPreCast
);
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
->
din_length_raw_
%
InOutVectorSize
!=
0
||
pArg
->
dout_length_raw_
%
InOutVectorSize
!=
0
)
{
return
false
;
}
return
true
;
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_dout
,
const
void
*
p_indices
,
void
*
p_din
,
index_t
dout_length
,
index_t
din_length
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
window_strides
)
override
{
// Assume p_dout, p_indices, p_din are packed memory space, dout_length and din_length are
// physical size of the packed tensor
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
DOutDataType
*>
(
p_dout
),
static_cast
<
const
IndexDataType
*>
(
p_indices
),
static_cast
<
DInDataType
*>
(
p_din
),
dout_length
,
din_length
,
window_lengths
,
window_strides
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_put_element_impl.hpp
0 → 100644
View file @
9b0ee1f1
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_put_element.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_put_element_1d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/stream_utility.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// output[indices] = input
template
<
typename
InDataType
,
typename
IndexDataType
,
typename
OutDataType
,
typename
ElementwiseOperation
,
InMemoryDataOperationEnum
MemOp
,
ck
::
index_t
InVectorSize
>
struct
DevicePutElementImpl
:
public
DevicePutElement
<
InDataType
,
IndexDataType
,
OutDataType
,
ElementwiseOperation
,
MemOp
>
{
template
<
typename
Desc_M
>
static
auto
PadDescriptor_M_1d
(
Desc_M
desc_m
,
index_t
gridSize
,
index_t
blockSize
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
const
auto
m
=
desc_m
.
GetLength
(
I0
);
const
index_t
loop_step
=
gridSize
*
blockSize
*
InVectorSize
;
const
auto
pad
=
math
::
integer_least_multiple
(
m
,
loop_step
)
-
m
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
make_right_pad_transform
(
m
,
pad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
return
desc_m_pad
;
}
static
auto
MakeDescriptor_M
(
index_t
length
,
index_t
gridSize
,
index_t
blockSize
)
{
const
auto
desc_m
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
length
));
return
PadDescriptor_M_1d
(
desc_m
,
gridSize
,
blockSize
);
}
using
InGrid1dDesc
=
decltype
(
MakeDescriptor_M
(
1
,
1
,
1
));
using
GridwisePutElement
=
GridwisePutElement_1D
<
InGrid1dDesc
,
InDataType
,
IndexDataType
,
OutDataType
,
ElementwiseOperation
,
MemOp
,
InVectorSize
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_input
,
const
IndexDataType
*
p_indices
,
OutDataType
*
p_output
,
index_t
input_length
,
ElementwiseOperation
elementwise_op
)
:
p_input_
{
p_input
},
p_indices_
{
p_indices
},
p_output_
{
p_output
},
input_length_raw_
{
input_length
},
elementwise_op_
{
elementwise_op
},
blockSize_
{
256
}
{
}
const
InDataType
*
p_input_
;
const
IndexDataType
*
p_indices_
;
OutDataType
*
p_output_
;
index_t
input_length_raw_
;
ElementwiseOperation
elementwise_op_
;
index_t
blockSize_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
index_t
gridSize
=
getAvailableComputeUnitCount
(
stream_config
);
InGrid1dDesc
in_grid_desc
=
MakeDescriptor_M
(
arg
.
input_length_raw_
,
gridSize
,
arg
.
blockSize_
);
const
auto
kernel
=
kernel_put_element_1d
<
GridwisePutElement
,
InGrid1dDesc
,
InDataType
,
IndexDataType
,
OutDataType
,
ElementwiseOperation
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
gridSize
),
dim3
(
arg
.
blockSize_
),
0
,
in_grid_desc
,
arg
.
p_input_
,
arg
.
p_indices_
,
arg
.
p_output_
,
arg
.
elementwise_op_
);
return
elapsed_time
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
->
input_length_raw_
%
InVectorSize
!=
0
)
{
return
false
;
}
return
true
;
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_input
,
const
void
*
p_indices
,
void
*
p_output
,
index_t
input_length
,
index_t
,
ElementwiseOperation
elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_input
),
static_cast
<
const
IndexDataType
*>
(
p_indices
),
static_cast
<
OutDataType
*>
(
p_output
),
input_length
,
elementwise_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment